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Abstract

This paper provides a study of some difficulties arising when extending residual distribution schemes for scalar advection
and advection–diffusion problems from triangular grids to quadrilateral ones. The Fourier and truncation error analyses on a
structured mesh are employed and a generalized modified wavenumber is defined, which provides a general framework for the
multidimensional analysis and comparison of different schemes. It is shown that, for the advection equation, linearity preserv-
ing schemes for quadrilaterals provide lower dissipation with respect to their triangle-based counterparts and very low or no
damping for high frequency Fourier modes on structured grids; therefore, they require an additional artificial dissipation term
for damping marginally stable modes in order to be employed with success for pure advection problems. In the case of advec-
tion–diffusion problems, a hybrid approach using an upwind residual distribution scheme for the convective fluctuation and
any other scheme for the diffusion term is only first-order accurate. On the other hand, distributing the entire residual by an
upwind scheme provides second-order accuracy; however, such an approach is unstable for diffusion dominated problems,
since residual distribution schemes are characterized by undamped modes associated with the discretization of the diffusive
fluctuation. The present analysis allows one to determine the conditions for a stable hybrid approach to be second-order accu-
rate and to design an optimal scheme having minimum dispersion error on a nine-point stencil. Well-documented test-cases
for advection and advection–diffusion problems are used to compare the accuracy properties of several schemes.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Genuinely multidimensional methods, known as Residual Distribution ðRDÞ or Fluctuation Splitting ðFSÞ
schemes, have been successfully developed by different research groups and have become an attractive
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alternative to Finite Volume and Finite Element ðFEÞ methods for discretizing advection and advection–
diffusion problems on unstructured triangular grids [1–9]. On the other hand, RD methods for quadrilateral
grids, which, for example, are the optimal choice for discretizing boundary layer regions, have not yet
reached the same level of maturity and reliability. This paper aims at understanding the causes and possibly
remove them. The origin of residual distribution methods for quadrilateral cells can be traced back to the
work of Ni [10], who proposed a Lax–Wendroff-type scheme with second-order accuracy in space and time.
Then, several upwind schemes have been designed, such as the ones provided in [11,12], where the residual is
distributed to downstream nodes with respect to the advection velocity. Furthermore, the RD schemes suc-
cessfully developed for triangular cells, such as the N, LDA, LW, and PSI schemes, have been extended to
cell-vertex quadrilateral grids in [13]. More recently, a method has been proposed to apply the RD schemes
to arbitrary conservation laws [14] and finite elements [15] in the absence of a conservative linearization [16].
In spite of these efforts, it is the authors opinion that a thorough analysis of the accuracy and stability prop-
erties of RD schemes on rectangular grids is still lacking and is worth pursuing. Therefore, this work
addresses some issues arising when extending RD schemes for scalar advection and advection–diffusion
problems from triangular grids to quadrilateral ones. The study is performed using the Fourier and trun-
cation error analyses on a structured mesh, in order to provide a strategy for the design of second-order
accurate stable schemes. In particular, the spectral analysis presented in this paper is multidimensional in
the sense that it is not restricted to the case of Fourier modes aligned with the advection velocity, as done
for example in [17–19], and all of the grid-resolved two-dimensional wavenumbers are analyzed for a given
advection angle.

Cell-vertex RD schemes are based on two main steps: (i) evaluating the fluctuation, namely, the flux balance
over the cell; (ii) distributing the fluctuation to its vertices.

Concerning the advection term, the cell residual is evaluated using a contour integral of the flux along the
cell faces, which assumes a linear reconstruction of the unknown and thus avoids the need for a conservative
linearization. For the distribution step, the linearity preserving LDA and LW schemes [13] have been used as a
starting point. It is noteworthy that for the case of scalar advection the extension to Cartesian grids of the LW

scheme for triangles recovers Ni’s scheme [10]. Then, a conservative SUPG method for quadrilateral cells is
derived and, finally, a dissipation-free minimum-dispersion-error second-order accurate scheme is provided.
The Fourier analysis shows that linearity preserving ðLPÞ schemes, when applied to quadrilateral cells, are
marginally stable, thus requiring an additional numerical dissipation to compute advection problems. In this
paper, LP schemes are effectively stabilized by the addition of the bias term of the SUPG scheme, without
affecting their order of accuracy.

The diffusion term is evaluated either by a standard Galerkin FE scheme or by a residual based approach.
In the latter case, the diffusive fluctuation is evaluated by a contour integral, whereby the gradients at the
nodes are computed by a Green–Gauss reconstruction. For the distribution of the diffusive fluctuation, two
alternatives have been discussed using either an upwind or a centred scheme.

A thorough analysis of second-order accurate discretizations of the advection–diffusion equation is then
provided.

Finally, the theoretical findings are validated by a series of numerical experiments carried out for advection
and advection–diffusion problems.

2. Model problem and RD schemes

2.1. Model equation

Consider the two-dimensional scalar conservation law with a dissipative term:
ou
ot
þ $ � f ¼ l$2u;

with u : X� ½0;þ1½! R;X � R2; f ¼ ðf ðuÞ; gðuÞÞT .

ð1Þ
For linear advection, the flux vector can be expressed as f = ku, where k ¼ ða; bÞT is the advection velocity,
whereas, for Burgers’ non-linear equation, the flux vector is given by f ¼ ðu2=2; uÞT . For a divergence-free
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advection velocity, Eq. (1) reduces to the scalar advection–diffusion equation. Pure convection and pure dif-
fusion are obtained when the coefficient l or the flux vector f are equal to zero, respectively. Eq. (1) is discret-
ized on a computational domain, X, divided into triangular or quadrilateral elements, XE, the generic node
being labeled i.

2.2. Basics of the RD approach

Cell-vertex RD schemes are based on two main steps: (i) evaluating the residual over each element; (ii) split-
ting the residual into contributions (signals) to be assigned to the vertices of the cell. The first step applies to
both the residual due to the advection term, namely, the inviscid flux balance over the element,
/E;a ¼
Z

XE

$ � fh dX; ð2Þ
and the residual due to the diffusion one,
/E;d ¼
Z

XE

l$2uh dX. ð3Þ
In the equations above, uh is the continuous piecewise linear (for triangles) or bilinear (for quadrilaterals)
approximation function; fh is the corresponding numerical flux vector, which must be a continuous and dif-
ferentiable approximation of f and must converge locally to f. It is noteworthy that the evaluation of $2uh

on linear and bilinear elements using only the nodal values for each element is meaningless (in the case of
triangular linear elements $uh ¼ const. and /E,d = 0 over each element). Therefore, the discrete Laplacian
operator is defined on a non-compact stencil using the nodal values of the neighboring elements, as described
in Section 2.4.2. Alternatively, a weighted residual approach has been employed as described in Section 2.4.1.
The second step is performed using suitable distribution coefficients for the advective and the diffusive fluctu-
ations, respectively:
/E;a
j ¼ cE

j /E;a; /E;d
j ¼ aE

j /E;d ; ð4Þ
where cE
j and aE

j are the distribution coefficients of element XE to node j, and /E;a
j and /E;d

j are the correspond-
ing signals assigned to it. Needless to say, the distribution coefficients sum up to one within each element, for
conservation:
X

j2E

cE
j ¼ 1;

X
j2E

aE
j ¼ 1.
Finally, the solution at each node is updated by summing up the contributions coming from all elements sur-
rounding it. Since only steady-state solutions are of interest in this work, a simple mass lumping of the weak
form of Eq. (1) provides the following semi-discrete formula to update the solution:
jXij
dui

dt
¼ �

X
XE2Di

/E;a
i þ

X
XE2Di

/E;d
i ; ð5Þ
where jXij indicates the area of the median dual cell of node i and Di represents the set of elements sharing node
i. In this work, Eq. (5) is integrated in time by the Euler explicit scheme, using local time-stepping to accelerate
convergence to steady state. In the following, the discretization of the advection term will be considered at
first, using several linear and non-linear RD schemes, the superscript ‘‘a’’ being omitted, for brevity; then,
the diffusion term will be considered.

2.3. RD schemes for the advection term

The fluctuation is computed as the flux balance over the cell,
/E ¼
Z

XE

$ � fh dX ¼
I

oXE

fh � nd‘. ð6Þ
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For triangular elements, due to the linear variation of uh over each element, the fluctuation can be computed,
exactly, as
/E ¼
X
j2E

kjuj; kj ¼
1

2
k � nj; ð7Þ
where kj is the inflow parameter of node j and nj is the inward unit vector normal to the edge opposing node j,
multiplied by the length of the edge itself (see Fig. 1(a)). In the case of non-linear advection, k is a cell-
linearized advection velocity which guarantees conservation, see [3], for more details.

For quadrilateral elements, in the absence of a conservative linearization, the fluctuation is computed by
the contour integral of the fluxes in Eq. (6) using the three point Simpson rule on each edge. Notice that
the bilinear (Q1) reconstruction of the unknown, uh, assuming standard Lagrangian bilinear shape functions
mapped from the biunit element onto the physical one, guarantees that the unknown is linear along the edges
of the element. The inflow parameter kj is still given by the definition (7), nj being the unit vector normal to the
diagonal opposite to node j multiplied by the diagonal length, as shown in Fig. 1(b).

2.3.1. Linearity preserving linear schemes

Linearity preserving ðLPÞ schemes are characterized by bounded distribution coefficients, so that the sig-
nals (and the solution update) vanish as the fluctuation vanishes:
lim
/E!0

/E
j ¼ lim

/E!0
cE

j /E ¼ 0. ð8Þ
For pure advection problems, Abgrall [7] proved that second-order space accuracy at steady state is equivalent
to require that /E

j ¼ Oðh3Þ. Since the linear representation of the solution on P1 and Q1 elements guarantees
that /E ¼ Oðh3Þ and the distribution coefficients cE

j are bounded, it follows that the LP property ensures
second-order accuracy. In the following, two linear LP schemes are described, namely, the LDA and Lax–
Wendroff (LW) ones [1,3].

The LDA scheme is defined by the following distribution coefficients:
cLDA
i ¼ kþi

X
j2E

kþj

 !�1

; ð9Þ
where kþi ¼ maxð0; kiÞ. This is a multidimensional upwind scheme, in the sense that no signal is sent to up-
wind nodes ðki 6 0) cLDA

i ¼ 0Þ. Notice that, in the case of quadrilateral cells, this scheme is two-target ex-
cept when k is aligned with one of the diagonals, in which case it becomes one-target, see Fig. 1(b). It is
noteworthy that, for quadrilateral elements, the distribution step provided in Eq. (9) is equivalent to the
one proposed in [11].
Fig. 1. Normals for the definition of the inflow parameters.
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The LW scheme is characterized by the following distribution coefficients:
cLW
i ¼ 1

e
þ kiDt

2jXEj
; ð10Þ
where Dt is the time-step, jXEj is the element area, and e is the number of nodes per element. For the case of a
uniform Cartesian mesh, this scheme coincides with Ni’s Lax–Wendroff scheme [10].

2.3.2. The N scheme

The conservative formulation of the N scheme presented in [14] is used, which has already been applied to
quadrilaterals for the solution of the Euler equations [15]. The scheme is first-order accurate and is defined as
/N
i ¼ kþi ðui � ucÞ; uc ¼

X
j2E

kþj

 !�1 X
j2E

kþj uj

 !
� /E

" #
; ð11Þ
where uc allows to satisfy conservation regardless of the linearization used. Such a scheme, unlike the standard
one for triangular grids [1], has not been proven to be positive. Nonetheless, it is very robust and yields oscil-
lation-free solutions.

2.3.3. The non-linear PSI scheme
According to Godunov’s theorem, a linear scheme cannot be both positive and linearity preserving. A com-

mon way to obtain a monotone LP scheme is to limit the coefficients of a positive linear scheme. The PSI scheme
is based on the use of the minmod limiter applied to the distribution coefficients of the N scheme [3], namely:
cPSI
i ¼

ðcN
i Þ
þP

j2EðcN
j Þ
þ ; ð12Þ
where
cN
j ¼

/N
j

/E and ðcN
j Þ
þ ¼ maxð0; cN

j Þ. ð13Þ
2.3.4. The SUPG scheme

The FE Streamline Upwind Petrov–Galerkin (SUPG) method, originally introduced by Brooks and
Hughes [20], can be recast into the present RD framework, as follows.

The signal to node i obtained using the standard SUPG formulation reads
/E;SUPG
i ¼

Z
XE

xi$ � fh dX; ð14Þ
the weight function being defined as
xi ¼ Ni þ s k � $Nið Þ;

where Ni are the standard Lagrangian shape functions and s = h/(2iki), see [3] for details.

In the case of triangular cells, where the P1 Lagrangian shape functions are linear, the upwind bias is con-
stant over each element and the distribution coefficients can be easily evaluated as
cSUPG
i ¼ 1

3
þ s

ki

jXEj
. ð15Þ
In the case of quadrilateral cells, the Lagrangian shape functions are defined on the biunit (master) Q1 element
and mapped onto the physical one, see Fig. 2. Since the upwind bias added to the Q1 Lagrangian shape func-
tions is not constant over the element, a numerical quadrature of the integral in Eq. (14) is needed, which has
to fulfill the following relation:
/E ¼
X
i2E

/E
i ¼

I
oXE

fh � nd‘; ð16Þ
to maintain conservation at the discrete level.
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Remark 1. Conservation is fulfilled by integrating the right-hand side of Eq. (14) as follows:
/E;SUPG
i ¼

I
oXE

N ifh � nd‘�
Z

XE

fh � $Ni dXþ
Z

XE

sðk � $N iÞ$ � fh dX. ð17Þ
Proof. Summing up all signals in an element, one obtains
X
i2E

/E;SUPG
i ¼

X
i2E

I
oXE

N ifh � n d‘�
X
i2E

Z
XE

fh � $N i dXþ
X
i2E

Z
XE

sðk � $N iÞ$ � fh dX

¼
I

oXE

X
i2E

Nifh � n d‘�
Z

XE

fh �
X
i2E

$Ni dXþ
Z

XE

ðsk �
X
i2E

$NiÞ$ � fh dX. ð18Þ
Standard Lagrangian shape functions obey to constant summation and conservation constraints:
X
i2E

NiðxÞ ¼ 1;
X
i2E

$NiðxÞ ¼ 0; 8x 2 XE. ð19Þ
Therefore, the first term in the right-hand side of Eq. (18) coincides with the right-hand side of Eq. (16) and the
remaining terms are identically zero. h

From a practical point of view, when evaluating the signal to node i, the contour integral in Eq. (17) is
computed using the Simpson rule along each edge, whereas the area integrals are computed using the Gauss
quadrature rule with four base points per element, provided that an average value of k is computed for the case
of non-linear advection.

The scheme of Eq. (17) can be considered an FE Galerkin scheme modified by an additional bias and is
second-order accurate on non Cartesian grids. In previous works by the authors, see e.g. [21], where integra-
tion by parts was applied also to the bias term, only first-order accurate solutions were obtained.
2.4. Discretization of the diffusion term

2.4.1. The FE Galerkin approach

In the RD framework [3–5], the standard FE Galerkin method [22] is usually employed to discretize the
diffusion term. For the internal nodes, using a weighted residual formulation with xi = Ni, one has
Z

X
xil$2uh dX ¼

Z
X

Nil$2uh dX ¼
I

oX
Nil$uh � n d‘|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼0

�
Z

X
l$N i � $uh dX

¼ �
X

XE2Di

Z
XE

l$Ni � $uh dX ¼
X

XE2Di

/E;d
i ; ð20Þ
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Fig. 2. Mapping from the biunit element onto the physical one.
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where the underbraced term is equal to zero, the weight functions being compact. For inflow boundary nodes,
Dirichlet boundary conditions are employed, no conditions being needed for outflow ones.

For P1 linear triangular elements, the shape function gradients are given as
$N i ¼
ni

2jXEj
. ð21Þ
Therefore, substituting the above expression into Eq. (20), the discretized diffusion term reads
X
XE2Di

/E;d
i ¼ �

X
XE2Di

Z
XE

l
ni

2jXEj
� $uh dX ¼ �

X
XE2Di

l
ni

2
� $uh; ð22Þ
where, keeping into account that $uh is constant over the element,
$uh ¼
X
j2XE

uj$Nj ¼
X
j2XE

uj
nj

2jXEj
. ð23Þ
For quadrilateral elements, the integral in Eq. (20),
Z
XE

l$N i � $uh dX; ð24Þ
has to be computed directly. Here, a four-point Gauss quadrature rule is employed.

2.4.2. The residual based approach

For pure diffusion problems, where there is no relevant direction in the flow, the most appropriate distri-
bution is a centred one (i.e., aE

j ¼ 1=4 8j). For advection–diffusion problems, one could choose to distribute
/E,d according to the same (most probably upwind) coefficients chosen for the convective term, namely,
aE

i ¼ cE
i . In this case, the resulting schemes maintain the LP property, provided that cE

i are bounded. In fact,
the analysis proposed in [7] for the advection equation can be easily extended to the case of the advection–
diffusion equation by requiring that /E ¼ /E;a þ /E;d ¼ Oðh3Þ. This condition can be fulfilled assuming
second-order approximations for the advective and diffusive fluxes.

The viscous fluctuation is evaluated as a contour integral, namely,
/E;d ¼
Z

XE

l$2uh dX ¼
I

oXE

l$uh � nd‘. ð25Þ
In order to ensure a second-order approximation of the diffusive flux, the solution gradient is reconstructed at
the nodes by a Green–Gauss procedure, using only internal cells for boundary nodes, and then the fluctuation
is computed applying the trapezoidal rule along each edge. It is worth observing that this reconstruction pro-
cedure for the nodal gradients leads to a centred second-order accurate finite difference scheme, for a uniform
Cartesian grid. Furthermore, the Green–Gauss reconstruction needs a larger stencil with respect to using the
FE Galerkin approach plus the RD discretization of the advective fluctuation, as already pointed out in [5].
3. Truncation error analysis

3.1. Advection equation

In this section, the truncation error analysis is carried out on a uniform structured grid, with mesh spacing
h, for the case of the linear advection equation, with constant velocity k inclined at an angle d = arctan(b/a)
with respect to the horizontal direction. Without loss of generality, the reference axes are oriented in such a
way that d 2 [0, p/2]. A general analysis for two-dimensional convection operators on structured grids [23]
shows that second-order accurate schemes are characterized by zero crosswind diffusion. Indeed, projecting
the linear advection equation onto the natural coordinate system (n, g) aligned with k, one has
ou
ot
þ kkk ou

on
¼ 0.
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The finite-difference expressions of several schemes of interest are provided in Appendix A.1. For RD
schemes, these expressions are obtained writing the signals /i from each element sharing node i in terms of
the values of the solution at the vertices of the element itself. Then, the truncation error is computed by a Tay-
lor series expansion around node i. Following this procedure, the truncation errors for four schemes of interest
are evaluated and discussed in the following.

The truncation error (TE) of an LP scheme is obtained at first, as
TELP ¼ � 1

48
h2 o

3u
og3
kkk sinð4dÞ þOðh3Þ. ð26Þ
It appears that:

(a) like in the case of LP schemes for triangular cells [3], the crosswind diffusion, namely, the coefficient of
o2u/og2, is equal to zero;

(b) the leading term of TELP has a dispersive character;
(c) the leading term of TELP is proportional to sin(4d); the same is true for all higher order terms, so that

TELP ¼ 0 for k aligned either with the grid coordinate axis or with a diagonal;
(d) the leading term of TELP does not depend on the distribution coefficients; thus, an LP scheme on Q1

elements cannot be more than second-order accurate, the accuracy being limited by the solution recon-
struction within each element.

The TE of the finite-difference second-order accurate (fully) upwind scheme is then evaluated as
TEFD-upw2 ¼ 1

12
h2 o

3u
og3
kkk sinð4dÞ þOðh3Þ; ð27Þ
which is of the same order, but four times higher, than TELP. The most accurate FD approximation of the
convective term based on the nine-point computational molecule of Fig. 3 is then considered:
ðk � $uÞi ’
1

12h
fa½un � up þ 4ðum � uqÞ þ ul � uj� þ b½un � ul þ 4ðuo � ukÞ þ up � uj�g; ð28Þ
which has the following truncation error:
TEFD-cen4 ¼ kkk
720

o5u
og5

h4 sinð4dÞ þOðh6Þ.
This scheme, introduced by Abarbanel and Kumar [24], has been recently recast into a residual-based frame-
work by Lerat and Corre [25]; on a Cartesian grid, it coincides with the discretization obtained by the FE
Fig. 3. Nine-point computational molecule for the truncation error analysis.
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Galerkin procedure and is well known to be unstable. Finally, the TE of the SUPG scheme has been
considered:
TESUPG ¼ 1

96
h3 o4u

og4
kkk sin2ð2dÞ þOðh4Þ. ð29Þ
It is well known that the SUPG scheme was designed to stabilize the FE Galerkin scheme for advection prob-
lems, by introducing a fourth-order cross-wind diffusion term.

3.2. Advection–diffusion equation

In this section, the truncation error analysis is carried out for the case of the linear advection–diffusion
equation. The finite-difference expressions of the diffusion term are provided in Appendix A.2 for the LP
and FE Galerkin ðFE-GalÞ schemes. Here, RD LP schemes are used to discretize the advection term, in order
to establish the conditions to be satisfied for second-order accuracy.

For RD schemes on triangular grids, Nishikawa and Roe [26] have shown that second-order accuracy can
be achieved if the scheme maintains the LP property at a global level, namely, if the entire fluctuation is dis-
tributed using bounded coefficients. For the uniform triangulation of Fig. 4, taking into account the following
relations:
c1 þ c3 þ c5 ¼ 1;

c2 þ c4 þ c6 ¼ 1;
ð30Þ
which must hold for conservation, the truncation error is obtained as
TELP ¼ � h
2
½ðc1 � c4Þox þ ðc2 � c5Þoy �r þOðh2Þ. ð31Þ
Therefore, the scheme is second-order accurate at steady state, since the residual r ¼ �k � $uþ l$2u vanishes.
In general, a first-order accurate solution is obtained, as for a hybrid scheme using an LP discretization of the
advection term and the FE-Gal approach for the diffusion term. Considering that the FE-Gal diffusive oper-
ator is second-order accurate by itself and gives no contribution to the dissipative first-order term, the TE of
such a scheme reads
TELP=FE-Gal ¼ � h
2
½ðc1 � c4Þox þ ðc2 � c5Þoy �ra þOðh2Þ. ð32Þ
Since the convective residual ra ¼ �k � $u does not necessarily vanish at steady state, the considered hybrid
scheme is second-order accurate only for c1 = c4 and c2 = c5.

In this work, a similar analysis is carried out for quadrilateral grids, obtaining an equivalent result. For LP
schemes and with reference to Fig. 5, the truncation error reads
TELP ¼ � h
2
½ðc1 � c3Þðox þ oyÞ � ðc2 � c4Þðox � oyÞ�r þOðh2Þ; ð33Þ
which provides second-order accuracy, since r = 0 at steady state. On the other hand, for a hybrid discretiza-
tion employing an LP scheme plus the FE-Gal approach, one has
Fig. 4. Uniform triangulation.
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TELP=FE-Gal ¼ � h
2
½ðc1 � c3Þðox þ oyÞ � ðc2 � c4Þðox � oyÞ�ra þOðh2Þ. ð34Þ
The hybrid LP=FE-Gal scheme is second-order accurate only for c1 = c3 and c2 = c4, which conditions also
make the convective-term discretization dissipation-free, as will be shown in Section 5. Finally, a hybrid
SUPG=FE-Gal scheme can never achieve second-order accuracy, its TE being:
TESUPG=FE-Gal ¼ � h
2
ðaox þ boyÞra þOðh2Þ. ð35Þ
4. Fourier analysis

This section provides a multidimensional Fourier analysis of the various discretizations considered so far,
in order to determine their dissipation and dispersive properties. Such an analysis, together with that of the
previous section, will allow one to design a minimum-dispersion-error RD scheme, which is suitable for the
discretization of the convective term in advection–diffusion problems.

Assume that the unknown variable u(x, y) is periodic over the domain [0, L]2, discretized by a uniform
Cartesian mesh with h = L/N; u(x, y) can be expressed as the summation of Fourier modes:
uðx; yÞ ¼
XN=2

kx ;ky¼�N=2

ûkx;ky e
2piðkxxþky yÞ=L;
where kx, ky are the wavenumbers along the x and y directions, respectively, and i is the imaginary unit. Intro-
ducing the dimensionless wavenumbers, bx, by 2 [�p, p], and the dimensionless coordinates, sx and sy, defined
as
bx ¼
2pkxh

L
;

by ¼
2pkyh

L
;

8><
>:

sx ¼
x
h
;

sy ¼
y
h
;

8><
>:
the Fourier mode can be written as eiðsxbxþsyby Þ, which is a planar wave with dimensionless wavevector

b = (bx, by), having magnitude b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

x þ b2
y

q
and direction h = arctan(by/bx). Then, the semi-discrete form

of Eq. (1) at a generic node of the computational domain can be written as
du
dt
¼ ½RhðuÞ�.
Therefore, the Fourier analysis of the discrete operator, Rh, provides the following evolution equation for the
single mode:
du
dt
¼ Ra

hðuÞ þRd
hðuÞ ¼ ðmZa þ rZdÞ u

Dt
; Z 2 C; ð36Þ
where m = ikiDt/h is the Courant number, r = lDt/h2, and Za�d ¼ Za�dðbx; by ; dÞ. For a fixed value of the
velocity flow angle, d, the locus of Za�d in the complex plane is called Fourier footprint and depends uniquely

on the spatial discretization operator.
Fig. 5. Cartesian grid.
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It is noteworthy that the present approach analyzes, for a given d, all of the grid-resolved wavenumbers and
thus it is not restricted to the case of Fourier modes aligned with the advection velocity (like for example,
among others, the analyses of Lele [18], Li [19], and Christon et al. [27,28]).

4.1. Pure advection and the multidimensional modified wavenumber

Consider the case of pure advection, i.e., l = 0. Indicating with u a solution which has the form of a generic
Fourier mode, the gradient of u can be written as
$u ¼ i

h
bu. ð37Þ
The exact derivative of u along the natural coordinate, n, is given as
ou
on
¼ k

kkk � $u ¼ iu
h

k

kkk � b ¼
iu
h

b cosðd� hÞ ¼ iu
h

~b; ð38Þ
where ~b ¼ b cosðd� hÞ can be considered as the generalization of the wavenumber for two-dimensional con-
vection. The approach usually employed for the dispersion analysis in two dimensions is based on the concept
of numerical anisotropy [17–19] and implies that the Fourier mode is aligned with the advection velocity.
Here, a more general multidimensional analysis is performed, which treats the advection angle, d, and the
Fourier mode angle, h, as independent parameters. Therefore, it is possible to evaluate the amplitude and
dispersion errors of all Fourier modes (�p 6 h 6 p), for any advection angle. The modified wavevector, b 0, cor-
responding to a discrete approximation, ð$uÞnum, of the gradient of u is defined as
ð$uÞnum ¼
i

h
b0u; ð39Þ
and the numerical derivative of u along n is
ou
on

� �
num

¼ k

kkk � ð$uÞnum ¼
iu
h
ðb0x cosðdÞ þ b0y sinðdÞÞ ¼ iu

h
~b0; ð40Þ
where ~b0 is the two-dimensional generalization of the modified wavenumber.
Considering that
kkk ou
on

� �
num

¼ � du
dt
¼ � mZa

Dt
u; ð41Þ
and employing Eq. (40), one has
~b0 ¼ iZa. ð42Þ

Assuming an exact integration in time, the amplification factor is
G ¼ emZa
; ð43Þ
thus, ReðZaÞ ¼ Imð~b0Þ and ImðZaÞ ¼ �Reð~b0Þ provide the dissipation and dispersion properties of the scheme,
respectively. It is well known that centred schemes are characterized by a pure imaginary Za, thereby adding
no spurious dissipation to the convective term, in contrast to upwind schemes, having a non-zero real part of
Za. It is also worth remarking that the modified wavenumber ~b0 allows one to compare the multidimensional
spectral properties of different schemes, such as FD, FE and compact (Padé-type) schemes. For example, the
modified wavenumber of a compact scheme can be computed as
~b0 ¼ cosðdÞb0xðbxÞ þ sinðdÞb0yðbyÞ;
where b0x and b0y depend on the discretization of the derivatives of u with respect to x and y, respectively, and
are given in several well-known publications for many schemes of interest, see, e.g., [18].

Appendix B provides the analytical expressions of the real part of Za and of the real part of the modified
wavenumber ~b0, which are used in the following to characterize the dissipative and dispersive properties of the
considered schemes.
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In order to analyze the properties of RD schemes, their amplification factors have been computed and the
contour lines of the corresponding magnitudes, jGj, are shown in Figs. 6–8 for different advection angles, d,
and m = 1. Obviously, for the considered case of pure advection, jGjex = 1. The figures indicate that multidi-
mensional LP schemes are characterized by a contour pattern with jGj close to one in an elongated region
perpendicular to the advection velocity. This means that the Fourier modes oscillating in the direction normal
to k are barely damped. This is due to the multidimensional nature of such schemes, in contrast to the behav-
Fig. 8. Amplification factor for the LDA (left) and LW (right) schemes for d = p/4.
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ior shown by classical dimensionally-split upwind schemes, see Fig. 9, which provides an isotropic contour
pattern for jGj except for the case d = 0. In this case in fact, the one-dimensional configuration is recovered
and the spectral properties (dissipation and dispersion) are independent of by. Comparing the LDA and
LW schemes for quadrilaterals (Figs. 6–8), the latter scheme appears to be less dissipative. Furthermore,
unlike their triangle-based counterparts, which are shown in Fig. 10, for d = p/6, the values of jGj are equal
to one for (bx, by) = (±p, ±p). This is due to the fact that the values of Za for high frequency modes cluster
near the origin of the complex plane, since
lim
bx;by!�p

Zaðbx; by ; dÞ ¼ Zaðbx ¼ �p; by ¼ �p; dÞ ¼ 0; ð44Þ
which is valid for all LP schemes on quadrilaterals. Therefore, for Q1 elements, the following proposition
holds.

Proposition 2. If a linear scheme is LP, then its Fourier footprint Za is constrained by Eq. (44).

Proof. Consider a generic node i and the computational cells XE 2 Di. For each XE, the elemental Fourier foot-

print, ZE;a, with respect to node i, can be obtained as follows. Express the fluctuation, /E,a, as a function of the
solution at the vertices of the element. For example, referring to Fig. 3, the fluctuation on the lower left ele-
ment Q1 is computed as
h
2
kkk½ðui � uj þ uk � uqÞ cosðdÞ þ ðui � uj � uk þ uqÞ sinðdÞ�. ð45Þ
Fig. 9. Amplification factor for the second-order accurate (fully) upwind FD scheme with d = 0 (left) and d = p/6 (right).

Fig. 10. Amplification factor for the LDA (left) and LW (right) schemes on a uniform triangulation and d = p/6.
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Then, substitute the Fourier mode into the general expression above, to get
/E;a ¼ �jXij
mZE;a

Dt
ui. ð46Þ
Using this procedure, one obtains the following expressions of the Fourier footprint for each element sharing
node i (see Fig. 3):
ZQ1;a ¼ �2ie�
i
2ðbxþby ÞA;

ZQ2;a ¼ �2ie
i
2ðbx�by ÞA;

ZQ3;a ¼ �2ie
i
2ðbxþby ÞA;

ZQ4;a ¼ �2ie�
i
2ðbx�by ÞA;

ð47Þ
where
A ¼ sin
bx

2

� �
cos

by

2

� �
cosðdÞ þ cos

bx

2

� �
sin

by

2

� �
sinðdÞ.
Considering that
jXij
dui

dt
¼ �

X
XE2Di

/E;a
i ¼ �

X
XE2Di

cE
i /E;a;
and using Eqs. (36) and (46), one has
Za ¼
X

XE2Di

cE
i Z

E;a. ð48Þ
From Eq. (47) it appears that condition (44) holds for any ZE;a, and thus also for Za, provided that the dis-
tribution coefficients cE

i are bounded. h

As a consequence, the amplification factor for high frequencies is very close to one (reaching one for the
highest resolved wavenumbers), whatever time discretization is employed and regardless of the chosen Cou-
rant number, m. As an example, if the derivative in the ODE (36) is discretized by an n-stage Runge–Kutta
scheme with coefficients c1, c2, . . . , cn�1, cn, the resulting amplification factor reads
GðZÞ ¼ 1þ cnmZð1þ cn�1mZð� � � ð1þ c1mZÞÞÞ. ð49Þ

Eq. (49) defines the stability domain of the Runge–Kutta time operator in the complex plane. It is imme-
diate to verify that the amplification factor at the origin of the complex plane is equal to one. Another way
to explain the phenomenon described above is the following: if we consider a checkerboard (maximum fre-
quency) mode, the fluctuation on each element is zero, so the signals for an LP scheme will be zero as well.
As a consequence, the mode will not be dissipated nor propagated. This behavior is very similar to that
observed when using centred FD schemes. It is noteworthy that numerical experiments prove that the high
frequency modes have low or no damping even on non Cartesian grids. Finally, the Fourier footprint of the
SUPG method, which is not LP, is not constrained by Eq. (44), and, as shown in Fig. 11, the magnitude of
its amplification factor is less than one for (bx, by) = (±p, ±p). In conclusion, the analysis above indicates
that LP schemes, when applied to quadrilateral cells, are marginally stable for any value of the Courant
number, so that they require additional dissipation to compute pure advection problems. Indeed, LP
schemes can be effectively stabilized by an artificial-dissipation (AD) term without affecting their order of
accuracy. A simple strategy is proposed here, namely, adding the bias term of the SUPG scheme to the
signals of the original LP scheme:
/E;a
i ¼ cLPi /E;a þ /bias

i ; /bias
i ¼

Z
XE

sðk � $NiÞ$ � fh dX. ð50Þ
Notice that such a scheme has the same dispersion error as the original LP one, but a greater dissipation error,
due to the added AD. For example, the amplification factor of the LDA scheme with AD is shown in Fig. 12.



Fig. 11. Amplification factor for the SUPG scheme with d = 0 (left) and d = p/6 (right).

Fig. 12. LDA scheme with AD: amplification factor error for the advection equation with d = 0 (left), d = p/6 (center) and d = p/4 (right).
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The dispersive properties of RD schemes are presented in terms of the dispersion error, Reð~b0Þ � ~b. Figs.
13–15 provide the contour lines in the (bx, by) plane, for different advection angles, d. The LDA and LW

schemes provide very similar contour patterns, which are also very close to those obtained on triangular cells,
which are given in Fig. 16 for the case d = p/6. The dispersion error obtained using the second-order accurate
centred and (fully) upwind FD schemes, the fourth-order accurate scheme of [24], the standard fourth-order
accurate FD scheme, which requires a wider stencil, and the Padé scheme are also reported in Figs. 18–21, for
comparison.

It has already been mentioned that the bias term of the artificial dissipation used to stabilize LP schemes is
purely dissipative and does not alter the dispersive properties of the underlying LP scheme. Therefore, the
SUPG scheme has the same dispersion error as that of the FE-Gal one and thus of the scheme of Abarbanel
and Kumar [24]. Moreover, some other well-known schemes share the same dispersive characteristics. Indeed,
the following relations will be derived:
Reð~b0FD�upw1Þ ¼ Reð~b0FD-cen2Þ; ð51Þ
Reð~b0LDAÞ ¼ Reð~b0N Þ; ð52Þ
Reð~b0LW Þ ¼ Reð~b0RD-cenÞ; ð53Þ
where FD-upw1 stands for the FD first-order upwind scheme, FD-cen2 stands for the FD second-order cen-
tred scheme, and RD-cen stands for the RD centred scheme (fluctuation equally distributed among the nodes).

Eq. (51) stems from a multidimensional generalization of the results achieved by Li [19]. In particular,
considering a computational stencil with 2N + 1 points in one dimension, the centred scheme is character-
ized by a formal accuracy of order 2N, while the most accurate upwind-biased scheme reaches an accuracy



Fig. 13. Dispersion error for the LDA (left) and LW (right) schemes for d = 0.

Fig. 14. Dispersion error for the LDA (left) and LW (right) schemes for d = p/6.

Fig. 15. Dispersion error for the LDA (left) and LW (right) schemes for d = p/4.
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of order 2N � 1. It is shown in [19] that the centred and upwind-biased schemes have the same dispersion
characteristics, their only difference consisting in the dissipation of the upwind-biased scheme. In a similar
way, one sees that LDA and N schemes have the same dispersion error and differ only for the dissipation
one, see Eq. (52), which is obtained directly by the Fourier footprints of the two schemes reported in
Appendix B.



Fig. 16. Dispersion error for the LDA (left) and LW (right) schemes on a uniform triangulation and d = p/6.

Fig. 18. Dispersion error for the second-order accurate (fully) upwind FD scheme with d = 0 (left) and d = p/6 (right).

Fig. 17. Dispersion error for the second-order accurate centred FD scheme with d = 0 (left) and d = p/6 (right).
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Finally, the LW scheme relies on the upwind parameters kj which are based on the normal to the diagonals.
With reference to Fig. 5, since n1 = �n3 and n2 = �n4, it follows that k1 = �k3 and k2 = �k4. As a conse-
quence, the LW distribution coefficients can be written as



Fig. 20. Dispersion error for the fourth-order accurate centred FD scheme with d = 0 (left) and d = p/6 (right).

Fig. 21. Dispersion error for the fourth-order accurate centred compact scheme with d = 0 (left) and d = p/6 (right).

Fig. 19. Dispersion error for the fourth-order accurate scheme of [24] with d = 0 (left) and d = p/6 (right).
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c1 ¼
1

4
þ �; c2 ¼

1

4
þ 1; c3 ¼

1

4
� �; c4 ¼

1

4
� 1; ð54Þ
where � and 1 are functions of the parameters kj. Furthermore, according to Eq. (47), the imaginary parts of
the Fourier footprints relative to opposite elements are equal, namely:
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ImðZQ1;aÞ ¼ ImðZQ3;aÞ;
ImðZQ2;aÞ ¼ ImðZQ4;aÞ.

ð55Þ
Therefore, since the elemental Fourier footprints are combined according to Eq. (48), with the coefficients gi-
ven by Eq. (54), non-centred contributions relative to opposite elements cancel out, leading to Eq. (53); it is
noteworthy that the same relationship can be obtained, using a similar procedure, also for a uniform
triangulation.

A few final considerations about the spectral properties of the considered schemes are in order. The disper-
sion error provided by the second-order accurate (fully) upwind scheme is slightly smaller than that of the cen-
tred one, which is very close to the errors of RD schemes and of the fourth-order accurate one of [24].
Moreover, unlike the dissipation error, the dispersion error of explicit (non compact) schemes is mostly depen-
dent on the extent of the computational molecule. In fact, the dispersion error of the fourth-order accurate FD
centred scheme, shown in Fig. 20, is lower than the one produced by the scheme of [24], due to its larger sten-
cil. This is not true when using a compact scheme; in fact, the dispersion error provided by RD schemes
appears markedly larger than that given by the centred Padé one using the same stencil (see Fig. 21).

4.2. Pure diffusion equation

Consider now the case of pure diffusion ($ � f ¼ 0 in Eq. (1)). For a solution u which has the form of a gen-
eric Fourier mode, the Laplacian of u can be written as
$2u ¼ � b2

h2
u. ð56Þ
On the other hand, its discrete approximation ð$2uÞnum can be expressed as
ð$2uÞnum ¼ �
b00

h2
u; ð57Þ
where, in general, b00 2 C. Considering that
ð$2uÞnum ¼
du
dt
¼ rZd

Dt
u; ð58Þ
and employing Eq. (57), one has
b00 ¼ �Zd . ð59Þ
Again, it can be noticed that the introduction of the function b00 allows one to analyze and compare explicit

and compact schemes for the discretization of the diffusion term within a single mathematical framework.
Assuming an exact time integration, the amplification factor is given as
G ¼ erZd
.

As a result, the dissipative and dispersive properties of the scheme are given by ReðZdÞ ¼ �Reðb00Þ and
ImðZdÞ ¼ �Imðb00Þ, respectively. Centred schemes, being characterized by a real function b00, are purely dis-
sipative. A non-centred approach introduces instead some dispersion. Obviously, in the case of pure diffusion,
a centred approach is the only suitable choice, but this may not be the case for advection–diffusion problems,
as shown in the following section. In the present analysis, two schemes have been considered for the pure dif-
fusion equation, namely, the centred RD and FE-Gal schemes, their Fourier footprints being provided in
Appendix C, for completeness. Here, the contour lines of the amplification factor error, jGj � jGjex, where
Gex = exp(�rb2), in the (bx, by) plane, for the case r = 1, are given in Figs. 22 and 23 for a uniform Cartesian
grid and a uniform triangulation, respectively. Fig. 22 shows that the FE Galerkin scheme is able to damp all
frequencies. On the other hand, a residual based approach leads to values of jGj equal to one for bx = ±p or
by = ±p. This means that the Fourier modes with the highest frequency are not damped, violating the dissi-
pative nature of the term, because the values of Zd for high frequency modes cluster near the origin of the
complex plane, namely



Fig. 22. Amplification factor error for the centred RD scheme (left) and FE Galerkin scheme (right) for quadrilateral cells.

Fig. 23. Amplification factor error for the centred RD scheme (left) and the FE Galerkin scheme (right) on a uniform triangulation.
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lim
bx!�p

Zdðbx; byÞ ¼ Zdðbx ¼ �p; byÞ ¼ 0; ð60Þ

lim
by!�p

Zdðbx; byÞ ¼ Zdðbx; by ¼ �pÞ ¼ 0; ð61Þ
which are valid for all LP residual distribution schemes.

Proposition 3. If a linear scheme for the discretization of the diffusion term on quadrilateral elements is LP, then

its Fourier footprint Zd is constrained by Eqs. (60) and (61).

Proof. Consider a generic node i and the computational cells XE 2 Di. For each XE, the elemental Fourier foot-

print, ZE;d , with respect to node i, can be obtained as follows. Express the fluctuation, /E,d, as a function of the
solution at the vertices of the element. For example, referring to the notation of Fig. A.1, the diffusive fluc-
tuation on the lower left element Q1 of Fig. 3 is computed as
� l
4
ð�ue � uf � uh þ 2ui � uj � uk � um � un þ 2uo þ 2up þ 2uq � uwÞ. ð62Þ
Then, substitute the Fourier mode into the general expression above to get
/E;d ¼ jXij
rZE;d

Dt
ui. ð63Þ
Using this procedure, the following expressions for the Fourier footprint are obtained for each element shar-
ing node i (see Fig. 3):



Fig. 24. Amplification factor

(right).
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ZQ1;d ¼ 2e�
i
2ðbxþby ÞA;

ZQ2;d ¼ 2e
i
2ðbx�by ÞA;

ZQ3;d ¼ 2e
i
2ðbxþby ÞA;

ZQ4;d ¼ 2e�
i
2ðbx�by ÞA;

ð64Þ
where
A ¼ cos
bx

2

� �
cos

by

2

� �
½�2þ cosðbxÞ þ cosðbyÞ�.
Considering that
jXij
dui

dt
¼
X

XE2Di

/E;d
i ¼

X
XE2Di

aE
i /E;d ;
and using Eqs. (36) and (63), one has
Zd ¼
X

XE2Di

aE
i Z

E;d . ð65Þ
From Eq. (64) it appears that conditions (60) and (61) hold for any ZE;d , and thus also for Zd , provided that
the distribution coefficients aE

i are bounded. h

It can be observed from Fig. 23 (left) that LP schemes on a uniform triangulation have a similar behavior,
whereas the Fourier footprint is constrained by the following relations:
Zdðbx ¼ �p; by ¼ 0Þ ¼ 0; ð66Þ
Zdðbx ¼ 0; by ¼ �pÞ ¼ 0; ð67Þ
Zdðbx ¼ �p; by ¼ �pÞ ¼ 0. ð68Þ
The proof is similar to the one given for quadrilaterals and is omitted for brevity.
In conclusion, Figs. 22 and 23 show that the residual based approach under-estimates dissipation of high

wavenumbers, whereas the FE Galerkin approach ensures smaller errors on most of the wavenumber plane.

4.3. Fourier analysis for the advection–diffusion equation

Consider now the advection–diffusion equation (1). As proven by the analysis of the truncation error
provided in Section 3, employing a hybrid approach, for example using an LP scheme for distributing
error for the advection–diffusion equation using the LDA –LDAschemewithPe=041 (left) and Pe = 145
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the convective fluctuation and the FE Galerkin scheme for discretizing the diffusion term, leads to a first-
order accurate scheme. On the other hand, it was shown that distributing the whole fluctuation (convec-
tive plus diffusive) by an LP scheme provides second-order accuracy. Fig. 24 show the amplification factor
errors, jGj � jGjex, in the (bx, by) plane, of the LDA–LDA scheme, for values of the (numerical) Peclet
number, Pe = m/r, equal to 0.1 and 1.5, respectively. For the lower value of Pe, the error is greater than
one at the upper-right and lower-left corners of the plane, indicating that some high frequency modes are
amplified. Indeed, RD schemes are unsuitable to discretize the diffusion term insofar as they introduce
undamped high-frequency modes. In the case of advection–diffusion problems, this amplification can be
effectively balanced by the dissipative effect due to the upwind treatment of the convective term, provided
that Pe is sufficiently high. Nishikawa and Roe [26] proposed to employ an upwind scheme continuously
switching towards a centred discretization as Pe decreases, in order to treat advection–diffusion problems
for any value of Pe. However, such a strategy, being based on an RD approach, shows poor stability
properties for diffusion dominated problems.
5. Minimum dispersion error RD scheme

The truncation error and Fourier analyses provided so far are used in this section to design a second-order
accurate minimum-dispersion error RD LP scheme which is suitable for the discretization of the convective
term in advection–diffusion problems. A generic LP scheme on quadrilateral elements is characterized by four
degrees of freedom, see Fig. 25. From Eq. (34) it appears that a hybrid LP=FE-Gal scheme with c1 = c3 and
c2 = c4 provides second-order accuracy for the advection–diffusion equation. It is noteworthy that a distribu-
tion scheme for the pure advection equation which satisfies the two conditions above does not introduce any
spurious dissipation, namely, it is purely dispersive. This property can be demonstrated looking at the Fourier
footprint of the elements contributing to each node in the case of pure advection, given by Eq. (47). In fact, the
real parts of the Fourier footprints of the four elements read:
ReðZQ1;aÞ ¼ �ReðZQ3;aÞ ¼ 1

2
½R1x cosðdÞ þR1y sinðdÞ�;

ReðZQ2;aÞ ¼ �ReðZQ4;aÞ ¼ 1

2
½R2x cosðdÞ þR2y sinðdÞ�;

ð69Þ
where
R1x ¼ �1þ cosðbxÞ � cosðbyÞ þ cosðbx þ byÞ;
R1y ¼ �1� cosðbxÞ þ cosðbyÞ þ cosðbx þ byÞ;
R2x ¼ 1� cosðbxÞ þ cosðbyÞ � cosðbx � byÞ;
R2y ¼ �1� cosðbxÞ þ cosðbyÞ þ cosðbx � byÞ.
Since opposite elements have opposite Fourier-footprint real parts, conditions
c1 ¼ c3 and c2 ¼ c4 ð70Þ

guarantee zero dissipation at each node. Thus, considering that the distribution coefficients must sum up to
one, for conservation, a one-parameter class of zero dissipation schemes exists. Needless to say, the centred
scheme, with c1 = c2 = c3 = c4 = 1/4, belongs to this class.
Fig. 25. Degrees of freedom for an LP scheme.
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The modified wavenumber for this one-parameter class of schemes reads
~b0 ¼ 2 cos
by

2

� �
cosðdÞ sin

bx

2

� �
þ cos

bx

2

� �
sin

by

2

� �
sinðdÞ

� �

� cos
bx � by

2

� �
� 4 sin

bx

2

� �
sin

by

2

� �
c1

� �
. ð71Þ
Starting from this formula, an optimal dispersion scheme can be designed by minimizing the L2 norm of the
dispersion error, Reð~b0Þ � ~b, over a portion [�-, -]2 of the frequency domain, namely,
L2 ¼
1

4-2

Z -

�-

Z -

�-
½Reð~b0Þ � ~b�2dbx dby

� �1=2

. ð72Þ
This procedure leads to the following distribution coefficients:
cO
1 ¼ cO

3 ¼
1

4
� w sinð2dÞ;

cO
2 ¼ cO

4 ¼
1

4
þ w sinð2dÞ;

ð73Þ
where w 2 Rþ. If one applies the minimization process over the entire frequency domain, - = p, the coefficient
w is equal to 7/12 and the scheme is referred here as the Opt scheme. Notice that some authors, see, e.g., [19],
perform the optimization considering only the low-frequency portion of the Fourier spectrum, since RD
schemes are characterized by high dispersion errors for the highest wavenumbers anyway. Following this strat-
egy, namely, choosing - = p/2, the value of w which minimizes L2 is w = 0.425.

When the flow is aligned with the mesh (d = 0), the Opt scheme coincides with the centred one, whose dis-
persion error is equal to that of the LW scheme, shown in Fig. 13 (right), because of Eq. (53). For d 6¼0, the Opt
scheme provides a smaller dispersion error with respect to either any other LP scheme or the centred FD one,
see Figs. 14, 17, and 19; furthermore, as shown in Fig. 26 for the case d = p/6, the dispersion error of the opti-
mal scheme is closer to that provided by the fourth-order accurate centred FD scheme, see Fig. 21. Therefore,
this scheme can indeed be considered optimal for discretizing the advection operator within the class of explicit

schemes with a nine-point stencil. It is noteworthy that the optimization procedure proposed here aims at pro-
viding a suitable discretization scheme of the advection operator in advection–diffusion problems, since the
minimization of the error is performed on the complete frequency plane. For pure advection problems, it
would be suitable to minimize the errors in the direction perpendicular to the advection velocity, the projection
of the solution gradient onto the advection direction being zero. Furthermore, the Opt scheme, being charac-
terized by zero dissipation, needs an AD mechanism to be employed for advection dominated problems. Here,
the same strategy described previously for LP schemes, see Eq. (50), is employed, namely, adding a dissipative
bias which does not alter the dispersion properties of the scheme:
/E;a
i ¼ cO

i /E;a þ /bias
i . ð74Þ
Fig. 26. Optimal scheme: dispersion error for the advection equation with d = p/6 (left) and d = p/4 (right).
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Since the Opt scheme is not dissipative, the amplification factor error of the Opt-AD scheme of Eq. (74) coin-
cides with that of the SUPG scheme shown in Fig. 11.

Consider now the case of pure diffusion. It can be shown in a similar way that the Fourier footprints relative
to opposite elements (Q1 � Q3 and Q2 � Q4) are symmetrical with respect to the real axis of the complex plane,
namely,
ReðZQ1;dÞ ¼ ReðZQ3;dÞ;
ReðZQ2;dÞ ¼ ReðZQ4;dÞ;

(
ImðZQ1;dÞ ¼ �ImðZQ3;dÞ;
ImðZQ2;dÞ ¼ �ImðZQ4;dÞ.

(
ð75Þ
Hence, looking at Eq. (65), it can be seen that schemes with a1 = a3 and a2 = a4 provide no spurious disper-
sion, namely, their Fourier footprints lie on the real axis of the complex plane. Thus a one-parameter class of
dispersion-free RD schemes is obtained. Analyzing the expression of the elemental Fourier footprints, Eq.
(64), it can be verified that within this class, the only scheme that does not produce amplified modes is the
centred one (ai = 1/4, i = 1, . . . , 4). Therefore, the schemes satisfying Eq. (73), with w 6¼ 0, provide amplified
modes when discretizing the diffusion term.

From the considerations above and the conclusions drawn in Section 4.3, it appears that an appropriate
scheme for discretizing the advection–diffusion equation with second-order accuracy on a nine-point stencil
would be a hybrid one using the Opt and FE-Gal schemes for the advection and diffusion terms, respectively.
In fact, the analysis shows that, within the class of second-order accurate schemes for the pure advection oper-
ator, RD LP schemes, including multidimensional upwind ones, are unsuitable for discretizing diffusion dom-
inated problems since they: (i) provide amplified (or at least undamped) modes arising from the distribution of
the diffusive fluctuation; (ii) produce first-order accurate solutions when employed to distribute the convective
fluctuation in conjunction with any other discretization scheme for the diffusion term. On the other hand, for
advection dominated problems, it could be worth distributing the entire fluctuation according to an upwind
RD LP approach, since the dissipation introduced by the discretization of the convective term effectively sta-
bilizes the aforementioned undamped modes arising from the diffusion term.
6. Numerical results

6.1. Advection equation

6.1.1. Accuracy study

The accuracy of some RD schemes for quadrilateral cells has been verified numerically by performing a
mesh-refinement study for the linear advection of the sinusoidal profile,
u ¼ cos p y � b
a

x
� �� �

;

in the domain [0, 1]2, with k = (a, b), a = 1, b = 2 (solution imposed at inlet boundaries). Four grids have
been used, composed of 322, 642, 1282, and 2562 elements, respectively, the second one being shown in
Fig. 27. The size of the mesh, namely, the square of the area of the domain divided by the number of ele-
ments, is again indicated with h. The logarithms of the L1, L2, and L1 norms of the errors have been com-
puted and the results are plotted versus the logarithm of h in Figs. 28–32, for the N, PSI, LDA, Opt-AD,
and SUPG schemes: the N scheme, which is not linearity preserving, is only first-order accurate; the PSI

scheme has an order of accuracy between one and two, as already known [3]; the LDA, Opt-AD, and SUPG
schemes are all seen to be second-order accurate. It is noteworthy that: the results of the LDA-AD scheme
coincide with those of the LDA scheme, within plotting accuracy; the Opt scheme does not converge, as
anticipated; the SUPG scheme is third-order accurate when using a uniform Cartesian grid, as shown in
Fig. 33, provided here for completeness. Furthermore, Fig. 34 provides a comparison among the conver-
gence histories of the various schemes, using an explicit Euler time integration and the non Cartesian grid
with 322 elements. The SUPG scheme requires the minimum number of iterations among the second-order
accurate ones. The addition of the artificial dissipation term slightly improves the performance of the LDA

scheme, somewhat alleviating the problems due to the marginal stability of LP schemes for high-frequency



Fig. 27. Non Cartesian 642 grid used for the accuracy study.
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Fig. 28. Accuracy study for the N scheme.
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modes. The Opt-AD scheme is the slowest second-order accurate one. Finally, the PSI scheme is the worst
performing one, due to its non-linearity. Notice that the CPU time required by each iteration of the SUPG

scheme is about equal to that needed for three iterations of either the Opt-AD or LDA-AD scheme, and ten
iterations of the LDA scheme, which, for the present case, turns out to be the most efficient second-order
accurate scheme.

6.1.2. Discontinuous solutions

The performance of RD schemes in the presence of discontinuities and for the case of non-linear advection
have been addressed for completeness.

The convection of a discontinuous profile with k = (a, b), a = 2, b = 1 has been computed in the domain
X = [0, 1]2, discretized by the 322 non-Cartesian mesh of Fig. 35. The boundary conditions are:
u(x, y = 0) = 3, u(x = 0, y) = 5, and u(x = 0, y = 0) = 4. The numerical results are presented in Fig. 36. As
expected, the N and PSI schemes yield monotone solutions, the first one being markedly more diffusive,
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Fig. 29. Accuracy study for the PSI scheme.

Fig. 30. Accuracy study for the LDA scheme.

Fig. 31. Accuracy study for the Opt-AD scheme.
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Fig. 32. Accuracy study for the SUPG scheme.

Fig. 33. Accuracy study for the SUPG scheme on uniform Cartesian grids.

Fig. 34. Convergencehistories forthe advection problem on the grid with 32

2elements.
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Fig. 35. Non Cartesian grid for the computation of discontinuous solutions.
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whereas the solutions obtained using the LDA scheme is affected by spurious oscillations, which are reduced
by the AD bias common to the SUPG, LDA-AD, and Opt-AD schemes. In order to provide a more precise
comparison of the performance of these schemes, Fig. 37 shows their solutions at y = 1. The PSI scheme is
clearly the most suitable one for computing discontinuous solutions; the LDA-TR (LDA scheme on an
unstructured triangular grid with 32 elements on the boundaries), SUPG, LDA-AD, and Opt-AD schemes
are just about equivalent and superior to the LDA one.

Furthermore, Burgers’ equation has been solved on the domain X = [0, 1]2, with boundary conditions:
u(x, y = 0) = 1.5 � 2x, u(x = 0, y) = 1.5, and u(x = 1, y) = �0.5. The cell-linearized advection velocity used
to compute the inflow parameters is evaluated as the arithmetic average of the nodal values. The solutions
obtained using again the grid of Fig. 35 are provided in Fig. 38. Like in the previous test-case, the N and
PSI schemes yield monotone solutions, whereas the LDA, LDA-AD, SUPG, and Opt-AD schemes produce
spurious oscillations. Finally, Fig. 39 provides the solutions at y = 0.25 and y = 0.75 for the SUPG, Opt-
AD, and PSI schemes. The three solutions are equivalent in the fan region, whereas the PSI scheme is again
the best one for computing the discontinuity.
(a) LDA (b) N (c) PSI

(d) SUPG (e) LDA – AD (f ) Opt – AD

Fig. 36. Advection of a step: contour lines from u = 3 to u = 6 with spacing Du = 0.2.



Fig. 37. Advection of a step: cut of the solution at y = 1, for the N, LDA, LDA-AD, and LDA-TR schemes (left) and for the SUPG, Opt-
AD, and PSI schemes (right).

Fig. 38. Burgers’ equation: contour lines from u = �0.5 to u = 2.5 with spacing Du = 0.1.

Fig. 39. Burgers’ equation: cut of the solution with the SUPG, Opt-AD, and PSI schemes at y = 0.25 and at y = 0.75.
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Fig. 40. Accuracy study for the hybrid LDA-FE approach.
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6.2. Advection–diffusion equation

The advection–diffusion problem used in [26] has been considered as a suitable problem for testing the accu-
racy of the considered schemes. The linear advection–diffusion equation is solved in the domain [0, 1]2, with
boundary conditions such that the following exact solution holds:
u ¼ � cosð2pkgÞ exp
1

2
n

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16p2k2l2

p
l

" #
;

where n = ax + by and g = bx � ay. The computations have been performed with k = (a, b), a = 1, b = 2,
l = 0.1, and two solution frequencies, namely, k = 1 and k = 4.

Four grids have been used with 322, 642, 1282, and 2562 elements, respectively, the coarsest one being shown
in Fig. 35. Firstly, two approaches have been tested, namely, the hybrid one using the LDA and FE-Gal
schemes ðLDA-FEÞ and the residual-based approach using the LDA scheme for both the advective and diffu-
sive fluctuations (LDA–LDA). The logarithms of the L1, L2, and L1 norms of the errors obtained using k = 1
are plotted versus the logarithm of h in Figs. 40 and 41, respectively. The hybrid LDA� FE approach is only
first-order accurate, whereas the LP LDA–LDA scheme ensures second-order accuracy. However, the latter
∞

2

1

Fig. 41. Accuracy study for the LDA–LDA scheme.



Fig. 42. Accuracy study: uniform Cartesian grid and k = 1.
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approach is characterized by a marginal stability for the high-frequency modes, which remarkably slows down
convergence for finer grids (lower Pe), see Fig. 48.

Then, two dissipation-free hybrid approaches have been considered, using the FE-Gal scheme for the dif-
fusion term and either the centred or the Opt RD scheme for the advection term. These schemes, denoted here
as C and O, respectively, have been used on four uniform Cartesian grids with 642, 1282, 2562 and 5122 ele-
ments: the logarithms of the norms of the solution errors are shown in Figs. 42 and 43 for k = 1 and k = 4,
respectively. The results obtained using the FE-Gal scheme for the entire residual (labeled G) are also shown,
for comparison. For k = 1, the errors of the G scheme are the smallest ones, those of the C scheme being smal-
ler than those of the O one. For k = 4, the O scheme is seen to outperform both the G and C ones. These
results are not surprising insofar as, for a single mode, the O scheme can be either superior or inferior to
the other ones; however, it is anticipated that for the general case of a solution with a wide frequency spec-
trum, the O scheme would perform best, insofar as the Opt scheme has been designed by minimizing the error
over the entire range of frequencies.

Then, solutions have been obtained on four non uniform grids with 642, 1282, 2562 and 5122 elements, sim-
ilar to the one in Fig. 35, and the logarithms of the error norms for k = 1 and k = 4 are shown in Figs. 44 and
45, respectively. The three schemes appear to be second-order accurate also on these non uniform grids, their
differences remaining similar with respect to the case of uniform Cartesian grids. For completeness, the
Fig. 43. Accuracy study: uniform Cartesian grid and k = 4.



Fig. 44. Accuracy study: non Cartesian grid and k = 1.

Fig. 45. Accuracy study: non Cartesian grid and k = 4.

Fig. 46. Advection–diffusion problem: solution contours for k = 1 using the O scheme.
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Fig. 47. Advection–diffusion problem: solution contours for k = 4 using the O scheme.

Fig. 48. Convergence history to steady state for the advection–diffusion problem on grids with 322 (left, Pe � 0.69) and 642 (right,
Pe � 0.35) elements.
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contour lines of the solutions obtained using the O scheme on the 1282 grid are given in Figs. 46 and 47 for
k = 1 and k = 4, respectively.

Finally, in order to verify the results of Section 4.3 about discretizations based on LP schemes either to
distribute the entire residual or using a hybrid approach, computations have been performed using also the
LDA-FE and LDA–LDA schemes, as well as the blended scheme of Nishikawa and Roe [26] (indicated as
LDA(NR)). For the case k = 1, the convergence histories obtained on two grids with 322 and 642 elements,
corresponding to Pe � 0.69 and Pe � 0.35, are shown in Fig. 48 together with those of the O scheme. The
O scheme is seen to converge to steady-state faster than the other ones, insofar as it does not produce
Fig. 49. Smith and Hutton problem: reference solution on the 512 · 256 grid with l = 0.1.
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undamped modes, like the C and G schemes, which experience very similar convergence histories (not shown
in the figure). The LDA(NR) scheme is very slow to converge (machine zero is achieved in about 80,000 iter-
ations on the 642 grid) due to some marginally stable modes. The LDA–LDA scheme is characterized by some
unstable modes associated with the discretization of the diffusion term. For the considered meshes, such modes
are stabilized by the numerical dissipation due to the discretization of the convective term, but if h (Pe) is
reduced further, the calculation eventually becomes unstable. It is noteworthy that, for the finer, but still
rather coarse 642 mesh, these unstable modes produce an initial increase of the residual, as shown in
Fig. 48 (right).

A final test-case has been considered, namely, the scalar advection–diffusion of a steep gradient proposed
by Smith and Hutton [29]. Computations have been performed in the domain [�1, 1] · [0, 1] with k = (a, b),
a = 2y(1 � x2), b = �2x(1 � y2). The following boundary conditions are imposed:
Fig.
uðx; 0Þ ¼ 1þ tanhð20xþ 10Þ at � 1 6 x 6 0 ðinlet boundaryÞ;
ouðx; 0Þ

oy
¼ 0 at 0 < x 6 1 ðoutlet boundaryÞ;

uðx; yÞ ¼ 1� tanh 10 at the other boundaries.
Two cases have been considered with l = 0.1 and 0.001, respectively, using a uniform Cartesian grid with
32 · 16 elements. The reference solution contours, computed on a 512 · 256 grid using the O scheme, are
shown in Figs. 49 and 50, respectively. Figs. 51 and 52 provide the distributions of the solutions along the
outlet boundary, obtained employing several schemes together with the reference solution for l = 0.1 and
l = 0.001, respectively. For the first case, which represents an advection–diffusion problem with Pe . 1, it ap-
pears that: the C, O, and G schemes provide similar, satisfactory solutions; the LDA-FE and SUPG-FE schemes
provide similar, less satisfactory results; the LDA–LDA and LDA(NR) schemes provide unsatisfactory solu-
Fig. 50. Smith and Hutton problem: reference solution on the 512 · 256 grid with l = 0.001.
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51. Smith and Hutton problem: solution along the entire outlet boundary for l = 0.1 on a 32 · 16 grid (left); local view (right).



x

u

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

ref
C
O
LDA - FE
LDA - LDA
LDA (NR)
SUPG - FE

x

u

0.2 0.3 0.4

1.6

1.8

2

ref
C
O
LDA - FE
LDA - LDA
LDA (NR)
SUPG - FE

Fig. 52. Smith an Hutton problem: solution along the entire outlet boundary for l = 0.001 on a 32 · 16 grid (left); partial view (right).
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tions. For the second case, which represents an advection dominated problem with Pe . 100, the artificial dis-
sipation term had to be added to the C and O schemes to ensure convergence; nevertheless, some spurious
oscillations are still present in their solutions. On the other hand, the SUPG-FE scheme is seen to provide a
very accurate solution and the LDA–LDA and LDA(NR) schemes are quite satisfactory.

7. Conclusions

This paper has presented a theoretical and numerical analysis of some difficulties arising when extending
residual distribution schemes for scalar advection and advection–diffusion problems from triangular grids
to quadrilateral ones. In particular, a multidimensional spectral analysis is provided, which enables one to
analyze all grid-resolved two-dimensional Fourier modes for a given advection angle. A two-dimensional gen-
eralization of the modified wavenumber definition is proposed, which provides a general framework for the
multidimensional analysis and comparison of different schemes.

Concerning the discretization of the convective term, the performance of the most successful second-order
accurate fluctuation splitting schemes, originally designed for triangles, have been assessed when applied to
bilinear quadrilateral cells. Moreover, a scheme with minimum dispersion-error on a nine-point stencil has
been designed, having zero dissipation, and an SUPG scheme for quadrilaterals is derived, which is third-order
accurate for uniform Cartesian grids and second-order accurate for general quadrilaterals. Linearity preserv-
ing schemes (such as the LDA and Lax–Wendroff schemes) are shown to provide lower dissipation with
respect to their triangle-based counterparts, and low or no damping for high frequency Fourier modes. More-
over, it has been proven that this property is shared by any linearity preserving scheme on quadrilaterals,
which, therefore, cannot be employed in practical computations for pure advection problems, without adding
some artificial dissipation to damp marginally stable modes. In this paper, LP schemes are stabilized effec-
tively by the bias term of the SUPG scheme, which does not lower their order of accuracy while preserving
the compactness of the scheme.

Concerning the discretization of the advection–diffusion equation, the analysis demonstrates that: (i) using
a hybrid approach, which employs an upwind residual distribution scheme for the convective fluctuation and
any other scheme for the diffusion term, leads to a first-order accurate method, as already shown by Nishik-
awa and Roe for the case of triangular grids; (ii) distributing the entire residual by an upwind approach pro-
vides a second-order accurate scheme, which is unstable for diffusion dominated problems, due to the
undamped modes stemming from the splitting of the diffusive fluctuation. For advection dominated problems,
the dissipation introduced by the upwind treatment of the convective term could be effective to stabilize the
undamped modes arising from the diffusion term. However, even the blended approach of Nishikawa and
Roe, which smoothly varies the distribution coefficients from an upwind scheme, for high (numerical) Peclet
numbers, to a centred one, for low Peclet numbers still provides marginally stable modes. Starting from this
scenario, the conditions for a hybrid approach to be second-order accurate have been obtained and a suitable
discretization of the advection–diffusion equation has been proposed, employing the minimum-dispersion-
error scheme for the convective term and the FE Galerkin scheme for the diffusion one. The dissipation
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and dispersion properties of such a discretization have been compared with those of the state-of-the-art
schemes having the same computational molecule. Several test-cases for linear and non-linear advection prob-
lems as well as linear advection–diffusion problems have been used to confirm and supplement the theoretical
findings by numerical experiments.

Appendix A. Finite difference expression of schemes

A.1. Advection operator

In this section the finite difference expressions of the schemes of interest are provided, using the notation of
Fig. 3.

	 N scheme (d 2 [0, p/4]):
1 Co
ðk � $uÞNi ’
kkk
4h
½4ðuq � uiÞ cosðdÞ þ ðuj þ up � 2uqÞ secðdÞ þ 2ðuj � upÞ sinðdÞ�. ðA:1Þ
	 Generic LP scheme on the uniform P1 triangulation of Fig. 4:
ðk � $uÞLPi ’
kkk
2h
½cosðdÞððuq � uiÞc1 þ ðuj � ukÞc2 þ ðui � umÞðc3 þ c4Þ þ ðuo � unÞc5 � ðui � uqÞc6Þ

þ sinðdÞððuj � uqÞc1 þ ðuk � uiÞc2 þ ðuk � uiÞc3 þ ðum � unÞc4 þ ðui � uoÞðc5 þ c6ÞÞ�. ðA:2Þ
	 Generic LP scheme on Q1 quadrilaterals:
ðk � $uÞLPi ’
kkk
2h

cosðdÞ½ð�ui þ uj � uk þ uqÞc1 þ ðui þ uk � ul � umÞc2 þ ðui � um � un þ uoÞc3

� ðui þ uo � up � uqÞc4� þ
kkk
2h

sinðdÞ½ð�ui þ uj þ uk � uqÞc1 þ ð�ui þ uk þ ul � umÞc2

þ ðui þ um � un � uoÞc3 þ ðui � uo � up þ uqÞc4�. ðA:3Þ
For completeness, the distribution coefficients1 are given for the LDA scheme (with d 2 (0, p/4):
c1 ¼
1þ tanðdÞ

2
; c2 ¼ c3 ¼ 0; c4 ¼

1� tanðdÞ
2

; ðA:4Þ
and for the LW scheme (which coincides with Ni’s LW scheme):
c1 ¼
1

4
1þ kkkDt

Dx
ðsinðdÞ þ cosðdÞÞ

� �
;

c2 ¼
1

4
1� kkkDt

Dx
ðsinðdÞ � cosðdÞÞ

� �
;

c3 ¼
1

4
1� kkkDt

Dx
ðsinðdÞ þ cosðdÞÞ

� �
;

c4 ¼
1

4
1þ kkkDt

Dx
ðsinðdÞ � cosðdÞÞ

� �
.

ðA:5Þ
	 SUPG scheme:
ðk � $uÞSUPG
i ’kkk

12h
½�8ui þ uj þ uk þ ul þ um þ un þ uo þ up þ uq þ 3 cosð2dÞð�uk þ um � uo þ uqÞ

þ sinðdÞðuj þ 4uk þ ul � un � 4uo � upÞ þ cosðdÞðuj � ul � 4um � un þ up þ 4uq

þ 3 sinðdÞðuj � ul þ un � upÞÞ�. ðA:6Þ
unterclockwise vertex numbering starting from the left bottom one.



Fig. A.1. Notation for the diffusion operators on quadrilateral and triangular cells.
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	 Second-order accurate (fully) upwind FD scheme (with d 2 (0, p/2):
ðk � $uÞFD-upw2
i ’ kkk

2h
½cosðdÞð3ui � 4uq þ uwÞ þ sinðdÞð3ui � 4uk þ utÞ�. ðA:7Þ
A.2. Diffusion operator

In this section the finite difference expressions of the schemes of interest are provided, using the notation of
Fig. A.1.

	 LP scheme on triangles:
�ðl$2uÞLPi ’
l

12h2
½ð�4ui � 4uj þ 2uk þ 2um þ un � uo þ 3up � 4uq þ ur þ 2us þ 3uw � uxÞa1

� ð4ui þ 4uj þ 4uk � 3ul þ um � un � 2uo � 2uq � ur þ us � 3ut � 2uxÞa2

þ ð2ua þ ub � 4ui � uj � 4uk þ 2ul � 4um � un þ 3uo þ 3uq þ us þ 2utÞa3

þ ð3ua � ub þ uc þ 2ud � 4ui þ uj � uk þ 3ul þ 2ð�2um � 2un þ uo þ uqÞÞa4

þ ð2ub þ uc � ud þ 3ue � 4ui þ uj þ 2uk þ 2um � 4un � 4uo þ 3up � uqÞa5

þ ðud þ 2ue � 4ui � uj þ 3uk þ 3um � un � 4uo þ 2ðup � 2uq þ uwÞ þ uxÞa6�. ðA:8Þ
	 LP scheme on quadrilaterals
�ðl$2uÞLPi ’
l

4h2
½ð�2ui � 2uj � 2uk þ ul þ um þ uo þ up � 2uq þ us þ ut þ uw þ uxÞa1

þ ðua � 2ui þ uj � 2uk � 2ul � 2um þ un þ uo þ uq þ ut þ uu þ uzÞa2

þ ðua þ ub þ ud þ ue � 2ui þ uk þ ul � 2um � 2un � 2uo þ up þ uqÞa3

þ ðue þ uf þ uh � 2ui þ uj þ uk þ um þ un � 2ðuo þ up þ uqÞ þ uwÞa4�. ðA:9Þ
	 FE-Gal scheme on triangles:
�ðl$2uÞFE�Gal
i ’ l

h2
ð�4ui þ uk þ uq þ um þ uoÞ. ðA:10Þ
note that in this particular configuration this discretization coincides with the second-order accurate centred
FD scheme;
	 FE-Gal scheme on quadrilaterals:
�ðl$2uÞFE�Gal
i ’ l

3h2
ð�8ui þ uj þ uk þ ul þ um þ un þ uo þ up þ uqÞ. ðA:11Þ
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Appendix B. Fourier analysis: advection operator

In this section the expressions of the real part of the Fourier footprint, ReðZÞ, and of the modified wave-
number, Reð~b0Þ, are provided as functions of d, bx, and by.

B.1. Dissipative properties: ReðZÞ
	 First-order accurate FD upwind scheme:
ReðZÞ ¼ ðcosðbxÞ � 1Þ cosðdÞ þ ðcosðbyÞ � 1Þ sinðdÞ. ðB:1Þ
	 Second-order accurate FD (fully) upwind scheme:
ReðZÞ ¼ �4 cosðdÞ sin4 bx

2

� �
þ sin4 by

2

� �
sinðdÞ

� �
. ðB:2Þ
	 N scheme on quadrilaterals:
ReðZÞ ¼ 1

2
ð2ðcosðbxÞ � 1Þ cosðdÞ þ cosðbxÞðcosðbyÞ � 1Þ secðdÞ � 2 sinðbxÞ sinðbyÞ sinðdÞÞ. ðB:3Þ
	 LDA scheme on quadrilaterals:
ReðZÞ ¼ 2½ðcosðbxÞ cosðbyÞ þ ðcosðbxÞ � cosðbyÞÞ cosð2dÞ � 1Þ secðdÞ � 2 sinðbxÞ sinðbyÞ sinðdÞ�. ðB:4Þ
	 LW scheme on quadrilaterals:
ReðZÞ ¼ 1

2
½cosðbxÞ cosðbyÞ þ ðcosðbxÞ � cosðbyÞÞ cosð2dÞ � 2 cosðdÞ sinðbxÞ sinðbyÞ sinðdÞ � 1�. ðB:5Þ
	 SUPG scheme on quadrilaterals (same as all non-dissipative LP schemes stabilized with the addition of
artificial dissipation):
ReðZÞ ¼ 1

6
½cosðbyÞ þ cosðbxÞð2 cosðbyÞ þ 1Þ þ 3ðcosðbxÞ � cosðbyÞÞ cosð2dÞ

� 3 sinðbxÞ sinðbyÞ sinð2dÞ � 4�. ðB:6Þ
	 N scheme on triangles:
ReðZÞ ¼ ðcosðbxÞ � 1Þ cosðdÞ þ ðcosðbx þ byÞ � cosðbxÞÞ sinðdÞ. ðB:7Þ
	 LDA scheme on triangles:
ReðZÞ ¼ 1

2
½�2 secðdÞ þ 2 cosðbxÞðcosðdÞ � sinðdÞÞ þ 2 sinðdÞðcosðbx þ byÞ þ cosðbyÞðtanðdÞ � 1Þ þ 1Þ�.

ðB:8Þ
	 LW scheme on triangles:
ReðZÞ ¼ cosðbxÞ cos2ðdÞ þ cosðbyÞ sin2ðdÞ þ sin
by

2

� �
sin

by

2

� �
� sin bx þ

by

2

� �� �
sinð2dÞ � 1. ðB:9Þ
B.2. Dispersive properties: Reð~b0Þ
	 First-order accurate upwind FD scheme and second-order accurate centred FD scheme:
Reð~b0Þ ¼ cosðdÞ sinðbxÞ þ sinðbyÞ sinðdÞ. ðB:10Þ
	 FE-Gal scheme on quadrilaterals (same as fourth-order accurate centred scheme of [24] on uniform Carte-
sian setting) and SUPG scheme:
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Reð~b0Þ ¼ 1

3
ððcosðbyÞ þ 2Þ cosðdÞ sinðbxÞ þ ðcosðbxÞ þ 2Þ sinðbyÞ sinðdÞÞ. ðB:11Þ
	 Second-order accurate (fully) upwind FD scheme:
Reð~b0Þ ¼ ð2� cosðbxÞÞ cosðdÞ sinðbxÞ þ ð2� cosðbyÞÞ sinðbyÞ sinðdÞ. ðB:12Þ
	 N and LDA scheme on quadrilaterals:
Reð~b0Þ ¼ 1

2
ðcosðbyÞ þ cosð2dÞÞ secðdÞ sinðbxÞ þ cosðbxÞ sinðbyÞ sinðdÞ. ðB:13Þ
	 LW and centred RD schemes on quadrilaterals:
Reð~b0Þ ¼ sinðbyÞ sinðdÞ cos2 bx

2

� �
þ cos2

by

2

� �
cosðdÞ sinðbxÞ. ðB:14Þ
	 Optimal RD scheme on quadrilaterals:
Reð~b0Þ ¼2 cos
by

2

� �
cosðdÞ sin

bx

2

� �
þ cos

bx

2

� �
sin

by

2

� �
sinðdÞ

� �

� cos
bx � by

2

� �
� 4 sin

bx

2

� �
sin

by

2

� �
1

4
þ 7

12
sinð2dÞ

� �� �
. ðB:15Þ
	 N and LDA scheme on triangles:
Reð~b0Þ ¼ cosðdÞ sinðbxÞ þ 2 cos bx þ
by

2

� �
sin

by

2

� �
sinðdÞ. ðB:16Þ
	 LW and centred RD schemes on triangles:
Reð~b0Þ ¼ 1

3
½cosðdÞð2 sinðbxÞ � sinðbyÞ þ sinðbx þ byÞÞ þ ð� sinðbxÞ þ 2 sinðbyÞ þ sinðbx þ byÞÞ sinðdÞ�.

ðB:17Þ

	 Compact FD centred schemes: to this class of schemes belong the approximations of the form (in 1D):
bu0i�2 þ au0i�1 þ u0i þ au0iþ1 þ bu0iþ2 ¼ c
uiþ3 � ui�3

6h
þ b

uiþ2 � ui�2

4h
þ a

uiþ1 � ui�1

2h
; ðB:18Þ
which are characterized by the following modified wavenumber in 2D:
Reð~b0Þ ¼ cosðdÞ ð6a sinðbxÞ þ 3b sinð2bxÞ þ 2c sinð3bxÞÞ
6ð2a cosðbxÞ þ 2b cosð2bxÞ þ 1Þ þ sinðdÞ

ð6a sinðbyÞ þ 3b sinð2byÞ þ 2c sinð3byÞÞ
6ð2a cosðbyÞ þ 2b cosð2byÞ þ 1Þ .

ðB:19Þ
The coefficients corresponding to the fourth-order accurate Padé scheme are:
b ¼ 0; a ¼ 1

4
; a ¼ 3

2
; b ¼ 0; c ¼ 0;
whereas the coefficients corresponding to the fourth-order accurate centred FD scheme are:
a ¼ b ¼ 0; a ¼ 4

3
; b ¼ � 1

3
; c ¼ 0.
Appendix C. Fourier analysis: diffusion operator

In this section the expressions of the real part of the Fourier footprint, ReðZÞ, are provided as functions of
bx, and by.
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C.1. Dissipative properties: ReðZÞ
	 FE-Gal discretization on triangles:
Z ¼ 2ðcosðbxÞ þ cosðbyÞ � 2Þ. ðC:1Þ
	 Centred LP residual based approach on triangles:
Z ¼ 1

18
½�2 cosðbxÞ þ 5 cosð2bxÞ þ 8 cosðbx � byÞ � 2 cosðbyÞ þ 5 cosð2byÞ þ 2ð�4 cosðbx þ byÞ

þ cosð2ðbx þ byÞÞ þ cosð2bx þ byÞ þ cosðbx þ 2byÞ � 6Þ�. ðC:2Þ
	 LDA LP residual based approach on triangles:
ReðZÞ ¼ 1

24
½10 cosðbx� byÞ þ 4 cosð2byÞ � 10 cosðbxþ byÞ þ 2 cosð2ðbxþ byÞÞ þ 6 cosðbxþ 2byÞ

� 3 cosðbx� dÞ secðdÞ þ 5 cosð2bx� dÞ secðdÞ þ cosð2bxÞð5� 4 tanðdÞÞ
þ ð2 cosðbx � byÞ � 2 cosðbyÞ þ 2 cosð2byÞ � 2 cosðbxþ byÞ þ 2 cosð2ðbx þ byÞÞ
þ 2 cosð2bxþ byÞ � 4 cosðbxþ 2byÞ þ 3 sinðbxÞ � 5 sinð2bxÞÞ tanðdÞ þ cosðbxÞð4 tanðdÞ � 3Þ � 16�.

ðC:3Þ
	 FE-Gal discretization on quadrilaterals:
Z ¼ 2

3
ð2 cosðbyÞ cosðbxÞ þ cosðbxÞ þ cosðbyÞ � 4Þ. ðC:4Þ
	 Centred LP residual based approach on quadrilaterals:
Z ¼ 2 cos2 bx

2

� �
cos2

by

2

� �
ðcosðbxÞ þ cosðbyÞ � 2Þ. ðC:5Þ
	 LDA LP residual based approach on quadrilaterals:
ReðZÞ ¼ 2 cos
bx

2

� �
cos

by

2

� �
ðcosðbxÞ þ cosðbyÞ � 2Þ cos

bx

2

� �
cos

by

2

� �
� sin

bx

2

� �
sin

by

2

� �
tanðdÞ

� �
.

ðC:6Þ
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