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Abstract

This paper provides a study of some difficulties arising when extending residual distribution schemes for scalar advection
and advection—diffusion problems from triangular grids to quadrilateral ones. The Fourier and truncation error analyses on a
structured mesh are employed and a generalized modified wavenumber is defined, which provides a general framework for the
multidimensional analysis and comparison of different schemes. It is shown that, for the advection equation, linearity preserv-
ing schemes for quadrilaterals provide lower dissipation with respect to their triangle-based counterparts and very low or no
damping for high frequency Fourier modes on structured grids; therefore, they require an additional artificial dissipation term
for damping marginally stable modes in order to be employed with success for pure advection problems. In the case of advec-
tion—diffusion problems, a hybrid approach using an upwind residual distribution scheme for the convective fluctuation and
any other scheme for the diffusion term is only first-order accurate. On the other hand, distributing the entire residual by an
upwind scheme provides second-order accuracy; however, such an approach is unstable for diffusion dominated problems,
since residual distribution schemes are characterized by undamped modes associated with the discretization of the diffusive
fluctuation. The present analysis allows one to determine the conditions for a stable hybrid approach to be second-order accu-
rate and to design an optimal scheme having minimum dispersion error on a nine-point stencil. Well-documented test-cases
for advection and advection—diffusion problems are used to compare the accuracy properties of several schemes.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Genuinely multidimensional methods, known as Residual Distribution (RD) or Fluctuation Splitting (FS)
schemes, have been successfully developed by different research groups and have become an attractive
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alternative to Finite Volume and Finite Element (F€) methods for discretizing advection and advection—
diffusion problems on unstructured triangular grids [1-9]. On the other hand, RD methods for quadrilateral
grids, which, for example, are the optimal choice for discretizing boundary layer regions, have not yet
reached the same level of maturity and reliability. This paper aims at understanding the causes and possibly
remove them. The origin of residual distribution methods for quadrilateral cells can be traced back to the
work of Ni [10], who proposed a Lax—Wendroff-type scheme with second-order accuracy in space and time.
Then, several upwind schemes have been designed, such as the ones provided in [11,12], where the residual is
distributed to downstream nodes with respect to the advection velocity. Furthermore, the RD schemes suc-
cessfully developed for triangular cells, such as the N, LDA, LW, and PSI schemes, have been extended to
cell-vertex quadrilateral grids in [13]. More recently, a method has been proposed to apply the RD schemes
to arbitrary conservation laws [14] and finite elements [15] in the absence of a conservative linearization [16].
In spite of these efforts, it is the authors opinion that a thorough analysis of the accuracy and stability prop-
erties of RD schemes on rectangular grids is still lacking and is worth pursuing. Therefore, this work
addresses some issues arising when extending RD schemes for scalar advection and advection—diffusion
problems from triangular grids to quadrilateral ones. The study is performed using the Fourier and trun-
cation error analyses on a structured mesh, in order to provide a strategy for the design of second-order
accurate stable schemes. In particular, the spectral analysis presented in this paper is multidimensional in
the sense that it is not restricted to the case of Fourier modes aligned with the advection velocity, as done
for example in [17-19], and all of the grid-resolved two-dimensional wavenumbers are analyzed for a given
advection angle.

Cell-vertex RD schemes are based on two main steps: (i) evaluating the fluctuation, namely, the flux balance
over the cell; (ii) distributing the fluctuation to its vertices.

Concerning the advection term, the cell residual is evaluated using a contour integral of the flux along the
cell faces, which assumes a linear reconstruction of the unknown and thus avoids the need for a conservative
linearization. For the distribution step, the linearity preserving LDA and LW schemes [13] have been used as a
starting point. It is noteworthy that for the case of scalar advection the extension to Cartesian grids of the LW
scheme for triangles recovers Ni’s scheme [10]. Then, a conservative SUPG method for quadrilateral cells is
derived and, finally, a dissipation-free minimum-dispersion-error second-order accurate scheme is provided.
The Fourier analysis shows that linearity preserving (£LP) schemes, when applied to quadrilateral cells, are
marginally stable, thus requiring an additional numerical dissipation to compute advection problems. In this
paper, LP schemes are effectively stabilized by the addition of the bias term of the SUPG scheme, without
affecting their order of accuracy.

The diffusion term is evaluated either by a standard Galerkin F€ scheme or by a residual based approach.
In the latter case, the diffusive fluctuation is evaluated by a contour integral, whereby the gradients at the
nodes are computed by a Green—Gauss reconstruction. For the distribution of the diffusive fluctuation, two
alternatives have been discussed using either an upwind or a centred scheme.

A thorough analysis of second-order accurate discretizations of the advection—diffusion equation is then
provided.

Finally, the theoretical findings are validated by a series of numerical experiments carried out for advection
and advection—diffusion problems.

2. Model problem and RD schemes
2.1. Model equation

Consider the two-dimensional scalar conservation law with a dissipative term:
Ou
— 4+ V-f=uViu,
o H (1)

with u: QX [0,400[— R,Q C R, f= (f(u)ug(“))T

For linear advection, the flux vector can be expressed as f = Au, where 4 = (a,b)” is the advection velocity,
whereas, for Burgers’ non-linear equation, the flux vector is given by f = (* /2,u)7. For a divergence-free
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advection velocity, Eq. (1) reduces to the scalar advection—diffusion equation. Pure convection and pure dif-
fusion are obtained when the coefficient u or the flux vector f are equal to zero, respectively. Eq. (1) is discret-
ized on a computational domain, 2, divided into triangular or quadrilateral elements, Q, the generic node
being labeled i.

2.2. Basics of the RD approach

Cell-vertex RD schemes are based on two main steps: (i) evaluating the residual over each element; (ii) split-
ting the residual into contributions (signals) to be assigned to the vertices of the cell. The first step applies to
both the residual due to the advection term, namely, the inviscid flux balance over the element,

" = / V-£,dQ, (2)
Q
and the residual due to the diffusion one,

p* z/ uVu, dQ. (3)
Q

In the equations above, u;, is the continuous piecewise linear (for triangles) or bilinear (for quadrilaterals)
approximation function; f;, is the corresponding numerical flux vector, which must be a continuous and dif-
ferentiable approximation of f and must converge locally to f. It is noteworthy that the evaluation of Vu,
on linear and bilinear elements using only the nodal values for each element is meaningless (in the case of
triangular linear elements Vi, = const. and ¢*? =0 over each element). Therefore, the discrete Laplacian
operator is defined on a non-compact stencil using the nodal values of the neighboring elements, as described
in Section 2.4.2. Alternatively, a weighted residual approach has been employed as described in Section 2.4.1.
The second step is performed using suitable distribution coefficients for the advective and the diffusive fluctu-
ations, respectively:

E =g, P = oEghe, (4)

where yf and acf are the distribution coefficients of element Qf to node j, and (j)f “and q’)f < are the correspond-
ing signals assigned to it. Needless to say, the distribution coefficients sum up to one within each element, for
conservation:

ny =1, Zocf =1
JEE JEE

Finally, the solution at each node is updated by summing up the contributions coming from all elements sur-
rounding it. Since only steady-state solutions are of interest in this work, a simple mass lumping of the weak
form of Eq. (1) provides the following semi-discrete formula to update the solution:

dl/ll' a
|Qi|E: - Z oF + Z o7, (5)
Qped; Qped;

where |Q;| indicates the area of the median dual cell of node i and 4; represents the set of elements sharing node
i. In this work, Eq. (5) is integrated in time by the Euler explicit scheme, using local time-stepping to accelerate
convergence to steady state. In the following, the discretization of the advection term will be considered at
first, using several linear and non-linear RD schemes, the superscript “a” being omitted, for brevity; then,
the diffusion term will be considered.

2.3. RD schemes for the advection term

The fluctuation is computed as the flux balance over the cell,

¢E:/ V-fhdgz:f f, -ndr. (6)
Qr 0Qp
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For triangular elements, due to the linear variation of u;, over each element, the fluctuation can be computed,
exactly, as

1
=> ku, k= A, (7)

JEE

where k; is the inflow parameter of node j and n; is the inward unit vector normal to the edge opposing node j,
multlplled by the length of the edge itself (see Fig. 1(a)). In the case of non-linear advection, 4 is a cell-
linearized advection velocity which guarantees conservation, see [3], for more details.

For quadrilateral elements, in the absence of a conservative linearization, the fluctuation is computed by
the contour integral of the fluxes in Eq. (6) using the three point Simpson rule on each edge. Notice that
the bilinear (Q1) reconstruction of the unknown, u,, assuming standard Lagrangian bilinear shape functions
mapped from the biunit element onto the physical one, guarantees that the unknown is linear along the edges
of the element. The inflow parameter k; is still given by the definition (7), n; being the unit vector normal to the
diagonal opposite to node j multiplied by the diagonal length, as shown in Fig. 1(b).

2.3.1. Linearity preserving linear schemes
Linearity preserving (LP) schemes are characterized by bounded distribution coefficients, so that the sig-
nals (and the solution update) vanish as the fluctuation vanishes:
lim db lim y‘fqﬁE =0. (8)
¢F—0 PE—0
For pure advection problems, Abgrall [7] proved that second-order space accuracy at steady state is equivalent
to requlre that qS O(k?). Since the linear representation of the solution on P1 and Q1 elements guarantees
that ¢F = O(h 3) and the distribution coefficients yf are bounded, it follows that the £P property ensures
second-order accuracy. In the following, two linear £LP schemes are described, namely, the LDA and Lax—
Wendroff (LW) ones [1,3].
The LDA scheme is defined by the following distribution coefficients:

-1
s ()
J€E
where k7 = max (0, k;). This is a multidimensional upwind scheme, in the sense that no signal is sent to up-
wind nodes (k; < 0 = y“P1 = 0). Notice that, in the case of quadrilateral cells, this scheme is two-target ex-
cept when 4 is aligned with one of the diagonals, in which case it becomes one-target, see Fig. 1(b). It is
noteworthy that, for quadrilateral elements, the distribution step provided in Eq. (9) is equivalent to the
one proposed in [11].

nj

(a) 1 (b) 2

Fig. 1. Normals for the definition of the inflow parameters.
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The LW scheme is characterized by the following distribution coefficients:
S 1 kAt
! e 2|QE| ’

(10)

where At is the time-step, |Qg| is the element area, and e is the number of nodes per element. For the case of a
uniform Cartesian mesh, this scheme coincides with Ni’s Lax—Wendroff scheme [10].

2.3.2. The N scheme
The conservative formulation of the N scheme presented in [14] is used, which has already been applied to
quadrilaterals for the solution of the Euler equations [15]. The scheme is first-order accurate and is defined as

-1
¢ =k (i —u), ue= <Zk,+> [(Z’ﬁ%) ¢E]a (11)

JeE JeE
where u, allows to satisfy conservation regardless of the linearization used. Such a scheme, unlike the standard
one for triangular grids [1], has not been proven to be positive. Nonetheless, it is very robust and yields oscil-
lation-free solutions.

2.3.3. The non-linear PSI scheme

According to Godunov’s theorem, a linear scheme cannot be both positive and linearity preserving. A com-
mon way to obtain a monotone £ scheme is to limit the coefficients of a positive linear scheme. The PSIscheme
is based on the use of the minmod limiter applied to the distribution coefficients of the N scheme [3], namely:

PSI (Vﬁvﬁ
Vi = 5 (12)
ZjeE(yj'v)+
where
N
vy :qﬁ—% and  (7})" = max(0,7}). (13)

2.3.4. The SUPG scheme

The FE Streamline Upwind Petrov—Galerkin (SUPG) method, originally introduced by Brooks and
Hughes [20], can be recast into the present RD framework, as follows.

The signal to node i obtained using the standard SUPG formulation reads

PESUPO / oV - £,dQ, (14)
Qp

the weight function being defined as
w; :N,‘ +T(l . VNi),

where N; are the standard Lagrangian shape functions and t = A/(2|4])), see [3] for details.
In the case of triangular cells, where the P1 Lagrangian shape functions are linear, the upwind bias is con-
stant over each element and the distribution coefficients can be easily evaluated as
1 k;
SUPG i
Y ==+7 . 15
In the case of quadrilateral cells, the Lagrangian shape functions are defined on the biunit (master) Q1 element
and mapped onto the physical one, see Fig. 2. Since the upwind bias added to the Q1 Lagrangian shape func-
tions is not constant over the element, a numerical quadrature of the integral in Eq. (14) is needed, which has
to fulfill the following relation:

"= "¢ =¢ f,-nde, (16)
0Qg

i€k

to maintain conservation at the discrete level.
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Remark 1. Conservation is fulfilled by integrating the right-hand side of Eq. (14) as follows:

6t — Ny onde— [ f,-VN.dQ + / (4 VNV - £,dQ. (17)

Qg Qp Qp

Proof. Summing up all signals in an element, one obtains

Z¢f~SUPG:ZfQEN,-f,,-nde—Z/Qth-VNidQJrZ/QET(A-VNi)V-f,,dQ

i€E ick /0 icE i€E
= > N, -ndé—/ f,- ZVN,-dQJr/ (th- Y VN)V-f,dQ. (18)
0Qr ek Q i€cE Q icE

Standard Lagrangian shape functions obey to constant summation and conservation constraints:
S Nx)=1; Y VNi(x)=0;  Vx€Q. (19)
ick ick

Therefore, the first term in the right-hand side of Eq. (18) coincides with the right-hand side of Eq. (16) and the

remaining terms are identically zero. O

From a practical point of view, when evaluating the signal to node i, the contour integral in Eq. (17) is
computed using the Simpson rule along each edge, whereas the area integrals are computed using the Gauss
quadrature rule with four base points per element, provided that an average value of 4 is computed for the case
of non-linear advection.

The scheme of Eq. (17) can be considered an F& Galerkin scheme modified by an additional bias and is
second-order accurate on non Cartesian grids. In previous works by the authors, see e.g. [21], where integra-
tion by parts was applied also to the bias term, only first-order accurate solutions were obtained.

2.4. Discretization of the diffusion term

2.4.1. The FE Galerkin approach
In the RD framework [3-5], the standard F€ Galerkin method [22] is usually employed to discretize the
diffusion term. For the internal nodes, using a weighted residual formulation with w; = N,, one has

/a),-,quuth: /N,-,quuthzf N;uVuy, -ndﬁ—/uVNi-Vuth
o Q ) o

=0

— . _ Ed
-/ NV d0 = 3 g, (20)

Qred; Qred;

, m

L1 an (x5y5)

(x5.y%)

11 (1-1) (x5,y5)
X
X:{y}

Fig. 2. Mapping from the biunit element onto the physical one.
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where the underbraced term is equal to zero, the weight functions being compact. For inflow boundary nodes,
Dirichlet boundary conditions are employed, no conditions being needed for outflow ones.
For P1 linear triangular elements, the shape function gradients are given as

n;
VN, = 21
200 2l
Therefore, substituting the above expression into Eq. (20), the discretized diffusion term reads
n.
¢ = — / f=—— Vi, dQ = U= - Vuy, (22)
Q;I,- Qped; Y% 2|Q | Q;i 2
where, keeping into account that Vu, is constant over the element,
Vu, = ZujVN Zu,zm (23)
JEQE JEQE
For quadrilateral elements, the integral in Eq. (20),
/ UVN; - Vu, dQ, (24)
Qp

has to be computed directly. Here, a four-point Gauss quadrature rule is employed.

2.4.2. The residual based approach

For pure diffusion problems where there is no relevant direction in the flow, the most appropriate distri-
butlon is a centred one (i.e., oc = 1/4 Vj). For advection—diffusion problems, one could choose to distribute
qb according to the same (most probably upwind) coefficients chosen for the convective term, namely,

af = yE. In this case, the resulting schemes maintain the £P property, provided that 7% are bounded. In fact,

the analysis proposed in [7] for the advection equation can be easily extended to the case of the advection—
diffusion equation by requiring that ¢* = ¢*“ 4 ¢*? = O(h*). This condition can be fulfilled assuming
second-order approximations for the advective and diffusive fluxes.

The viscous fluctuation is evaluated as a contour integral, namely,

qu"d :/ uViu, dQ :7{ uVuy, -ndl. (25)
Q 00,

In order to ensure a second-order approximation of the diffusive flux, the solution gradient is reconstructed at
the nodes by a Green—Gauss procedure, using only internal cells for boundary nodes, and then the fluctuation
is computed applying the trapezoidal rule along each edge. It is worth observing that this reconstruction pro-
cedure for the nodal gradients leads to a centred second-order accurate finite difference scheme, for a uniform
Cartesian grid. Furthermore, the Green—Gauss reconstruction needs a larger stencil with respect to using the
FE Galerkin approach plus the RD discretization of the advective fluctuation, as already pointed out in [5].

3. Truncation error analysis
3.1. Advection equation

In this section, the truncation error analysis is carried out on a uniform structured grid, with mesh spacing
h, for the case of the linear advection equation, with constant velocity 4 inclined at an angle § = arctan(b/a)
with respect to the horizontal direction. Without loss of generality, the reference axes are oriented in such a
way that ¢ € [0, m/2]. A general analysis for two-dimensional convection operators on structured grids [23]
shows that second-order accurate schemes are characterized by zero crosswind diffusion. Indeed, projecting
the linear advection equation onto the natural coordinate system (¢, 1) aligned with 4, one has

au
o T4 ||
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The finite-difference expressions of several schemes of interest are provided in Appendix A.l. For RD
schemes, these expressions are obtained writing the signals ¢, from each element sharing node 7 in terms of
the values of the solution at the vertices of the element itself. Then, the truncation error is computed by a Tay-
lor series expansion around node i. Following this procedure, the truncation errors for four schemes of interest
are evaluated and discussed in the following.

The truncation error (TE) of an £P scheme is obtained at first, as

1,0
cp_ 10U : 3
TE*" = 48h o |4l sin(49) + O(h™). (26)
It appears that:

(a) like in the case of L£LP schemes for triangular cells [3], the crosswind diffusion, namely, the coefficient of
0%u/on?, is equal to zero;

(b) the leading term of TE“” has a dispersive character;

(c) the leading term of TE” is proportional to sin(46); the same is true for all higher order terms, so that
TE*” = 0 for 4 aligned either with the grid coordinate axis or with a diagonal;

(d) the leading term of TE*” does not depend on the distribution coefficients; thus, an £P scheme on Q1
elements cannot be more than second-order accurate, the accuracy being limited by the solution recon-
struction within each element.

The TE of the finite-difference second-order accurate (fully) upwind scheme is then evaluated as

1
12
which is of the same order, but four times higher, than TE“”. The most accurate FD approximation of the
convective term based on the nine-point computational molecule of Fig. 3 is then considered:

~ L

TEFD-upr _

o .
hza—,ﬁ 4] sin(48) + O(?), (27)

(A-Vu), ~ o {alu, —u, + 4(u — uy) +u; — u;] + blu, — u; + 4(u, — uy) +u, — ujl}, (28)
which has the following truncation error:
. A u , .
TEf’Dcen4:||__4 4 6.
720 6115h sin(40) + O(h°)

This scheme, introduced by Abarbanel and Kumar [24], has been recently recast into a residual-based frame-
work by Lerat and Corre [25]; on a Cartesian grid, it coincides with the discretization obtained by the FE

Qy Q3

Fig. 3. Nine-point computational molecule for the truncation error analysis.
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Galerkin procedure and is well known to be unstable. Finally, the TE of the SUPG scheme has been
considered:
e = L 8 in 20) + ot (29)
9 ont '
It is well known that the SUPG scheme was designed to stabilize the F€ Galerkin scheme for advection prob-
lems, by introducing a fourth-order cross-wind diffusion term.

3.2. Advection—diffusion equation

In this section, the truncation error analysis is carried out for the case of the linear advection—diffusion
equation. The finite-difference expressions of the diffusion term are provided in Appendix A.2 for the LP
and FE Galerkin (FE-Gal) schemes. Here, RD LP schemes are used to discretize the advection term, in order
to establish the conditions to be satisfied for second-order accuracy.

For RD schemes on triangular grids, Nishikawa and Roe [26] have shown that second-order accuracy can
be achieved if the scheme maintains the £P property at a global level, namely, if the entire fluctuation is dis-
tributed using bounded coefficients. For the uniform triangulation of Fig. 4, taking into account the following
relations:

Nt trs=1,

(30)
72+ %+ =1,
which must hold for conservation, the truncation error is obtained as
h
TE” = ) (7 = 74)0 + (72 — 75)0,Jr + O(R?). (31)
Therefore, the scheme is second-order accurate at steady state, since the residual » = —A - Vu + uV?u vanishes.

In general, a first-order accurate solution is obtained, as for a hybrid scheme using an £P discretization of the
advection term and the FE-Gal approach for the diffusion term. Considering that the FE-Gal diffusive oper-
ator is second-order accurate by itself and gives no contribution to the dissipative first-order term, the TE of
such a scheme reads

o h .
TEPE6 = 2(3y = 23 + (72 — 731" + O(R?). (32)

Since the convective residual »* = —4 - Vu does not necessarily vanish at steady state, the considered hybrid
scheme is second-order accurate only for y; = y4 and y, = ys.

In this work, a similar analysis is carried out for quadrilateral grids, obtaining an equivalent result. For LP
schemes and with reference to Fig. 5, the truncation error reads

TE? = 211 = 1)@ + ) ~ (2 = 7)(@ = )} + O, (33)

which provides second-order accuracy, since r = 0 at steady state. On the other hand, for a hybrid discretiza-
tion employing an L£P scheme plus the F€-Gal approach, one has

Ts

N
/’/\

73
T T;

Fig. 4. Uniform triangulation.



168 P. De Palma et al. | Journal of Computational Physics 218 (2006) 159-199

TSP/ = 215, —32)(0+0,) — (7 = 22)(0 — 0 + OGP (34)

The hybrid LP/FE-Gal scheme is second-order accurate only for y; = y; and y, = 74, which conditions also
make the convective-term discretization dissipation-free, as will be shown in Section 5. Finally, a hybrid
SUPG/FE-Gal scheme can never achieve second-order accuracy, its TE being:

TESUPG/Fe-Gal _ _g(aax + b+ o). (35)

4. Fourier analysis

This section provides a multidimensional Fourier analysis of the various discretizations considered so far,
in order to determine their dissipation and dispersive properties. Such an analysis, together with that of the
previous section, will allow one to design a minimum-dispersion-error RD scheme, which is suitable for the
discretization of the convective term in advection—diffusion problems.

Assume that the unknown variable u(x, y) is periodic over the domain [0, LT, discretized by a uniform
Cartesian mesh with 2 = L/N; u(x, y) can be expressed as the summation of Fourier modes:

N/2

u(xay) = Z i:lka(ye
ke ky=—N/2

2mi(kxx+kyy) /L
)

where k,, k), are the wavenumbers along the x and y directions, respectively, and i is the imaginary unit. Intro-
ducing the dimensionless wavenumbers, fy, ff, € [—=, n], and the dimensionless coordinates, s, and s,, defined
as

2ntk.h X
ﬁx - L ) Sy = Za
2nk,h _Y
ﬁy = Ty7 Sy Z’

the Fourier mode can be written as e'®#+%A) which is a planar wave with dimensionless wavevector

B = (P B)), having magnitude f = ,/ ﬁi + ﬁi and direction 0 = arctan(f,/f). Then, the semi-discrete form
of Eq. (1) at a generic node of the computational domain can be written as

du
&= Ra(w)

Therefore, the Fourier analysis of the discrete operator, R;, provides the following evolution equation for the
single mode:

du _ a d _ a d u

a Ry(u) + Ry (u) = (v2° + 02 )At’
where v = [[4|At/h is the Courant number, ¢ = pAt/h’, and 2 = 2°°“(B., B,,5). For a fixed value of the
velocity flow angle, d, the locus of Z¢°¢ in the complex plane is called Fourier footprint and depends uniquely

on the spatial discretization operator.

ZeCc, (36)

Fig. 5. Cartesian grid.
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It is noteworthy that the present approach analyzes, for a given J, all of the grid-resolved wavenumbers and

thus it is not restricted to the case of Fourier modes aligned with the advection velocity (like for example,
among others, the analyses of Lele [18], Li [19], and Christon et al. [27,28]).

4.1. Pure advection and the multidimensional modified wavenumber

Consider the case of pure advection, i.e., u = 0. Indicating with u« a solution which has the form of a generic
Fourier mode, the gradient of u can be written as

Vu = pu. (37)
h
The exact derivative of u along the natural coordinate, &, is given as
Ou A fiu A iu fu -~
—=—Vu=—_—-B=—Ffcos(é6—0) =—4, (38)
oc (14 h||4]l h h

where ff = ffcos(6 — 0) can be considered as the generalization of the wavenumber for two-dimensional con-
vection. The approach usually employed for the dispersion analysis in two dimensions is based on the concept
of numerical anisotropy [17-19] and implies that the Fourier mode is aligned with the advection velocity.
Here, a more general multidimensional analysis is performed, which treats the advection angle, d, and the
Fourier mode angle, 6, as independent parameters. Therefore, it is possible to evaluate the amplitude and
dispersion errors of all Fourier modes (—n < 6 < =), for any advection angle. The modified wavevector, p’, cor-
responding to a discrete approximation, (Vi) of the gradient of u is defined as

num?

(Vi) = 1 B (39)

and the numerical derivative of u along ¢& is
Ou A fu fu ~
- - v — (R ) " sin(d)) = — 40
(56) =i (Vb = Brcon(0) + i) = 517 (40)
where ' is the two-dimensional generalization of the modified wavenumber.
Considering that

and employing Eq. (40), one has

B =iz (42)
Assuming an exact integration in time, the amplification factor is

G=e"; (43)

thus, Re(Z%) = Im(f') and Im(Z%) = —Re(f) provide the dissipation and dispersion properties of the scheme,
respectively. It is well known that centred schemes are characterized by a pure imaginary Z“, thereby adding
no spurious dissipation to the convective term, in contrast to upwind schemes, having a non-zero real part of
Z¢ Tt is also worth remarking that the modified wavenumber /5 allows one to compare the multidimensional
spectral properties of different schemes, such as D, F€ and compact (Padé-type) schemes. For example, the
modified wavenumber of a compact scheme can be computed as

P = cos(0)B,(B.) + sin(6) B, (B,),

where B, and ,B; depend on the discretization of the derivatives of u with respect to x and y, respectively, and
are given in several well-known publications for many schemes of interest, see, e.g., [18].

Appendix B provides the analytical expressions of the real part of Z* and of the real part of the modified
wavenumber f3', which are used in the following to characterize the dissipative and dispersive properties of the
considered schemes.
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In order to analyze the properties of RD schemes, their amplification factors have been computed and the
contour lines of the corresponding magnitudes, |G|, are shown in Figs. 6-8 for different advection angles, 0,
and v = 1. Obviously, for the considered case of pure advection, |G|cx = 1. The figures indicate that multidi-
mensional £P schemes are characterized by a contour pattern with |G| close to one in an elongated region
perpendicular to the advection velocity. This means that the Fourier modes oscillating in the direction normal
to 4 are barely damped. This is due to the multidimensional nature of such schemes, in contrast to the behav-
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Fig. 8. Amplification factor for the LDA (left) and LW (right) schemes for 6 = n/4.
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ior shown by classical dimensionally-split upwind schemes, see Fig. 9, which provides an isotropic contour
pattern for |G| except for the case 6 = 0. In this case in fact, the one-dimensional configuration is recovered
and the spectral properties (dissipation and dispersion) are independent of f,. Comparing the LDA and
LW schemes for quadrilaterals (Figs. 6-8), the latter scheme appears to be less dissipative. Furthermore,
unlike their triangle-based counterparts, which are shown in Fig. 10, for 6 = n/6, the values of |G| are equal
to one for (fy, f,) = (£n, £n). This is due to the fact that the values of Z“ for high frequency modes cluster
near the origin of the complex plane, since

jlim, Z(B.By.0) = Z(B, = £m.f, = £7.) =0, (#4)
which is valid for all LP schemes on quadrilaterals. Therefore, for Q1 elements, the following proposition
holds.

Proposition 2. If a linear scheme is LP, then its Fourier footprint Z° is constrained by Eq. (44).

Proof. Consider a generic node i and the computational cells Qf € 4,. For each Qp, the elemental Fourier foot-
print, Z54, with respect to node 7, can be obtained as follows. Express the fluctuation, ¢, as a function of the
solution at the vertices of the element. For example, referring to Fig. 3, the fluctuation on the lower left ele-
ment Q1 is computed as

h .
3 Al [(u; — u; + we — uy) cos(d) + (u; — u; — uy + uy) sin(9)]. (45)
3 2 A 0 1 2 3 3 2 A1 0 1 2 3
3 3 3 3
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Fig. 10. Amplification factor for the LDA (left) and LW (right) schemes on a uniform triangulation and é = rt/6.
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Then, substitute the Fourier mode into the general expression above, to get

s o 20,
9 =~ . (46)

Using this procedure, one obtains the following expressions of the Fourier footprint for each element sharing
node i (see Fig. 3):

Z0na _ _2567%(ﬁx+ﬁy)14’

Z0a _zﬁe%(ﬁﬁﬁy)A

(47)
204 = _jerlbth g,
ZQ4,0 — _Zﬁe*%(ﬁxfﬁy)A,
where
o ﬁx ﬁ}" ﬁx : ﬁy :
A =sin <2 cos | > cos(0) + cos 5 )sin (5 sin(9).
Considering that
du,- a a
@l == D o == ™,
QEEA[ QEEA;
and using Egs. (36) and (46), one has
Z4 = Z ’))ZEZEa (48>

QEEA[

From Eq. (47) it appears that condition (44) holds for any Z““, and thus also for Z“, provided that the dis-
tribution coefficients y* are bounded. [J

As a consequence, the amplification factor for high frequencies is very close to one (reaching one for the
highest resolved wavenumbers), whatever time discretization is employed and regardless of the chosen Cou-
rant number, v. As an example, if the derivative in the ODE (36) is discretized by an n-stage Runge-Kutta
scheme with coefficients ¢y, ¢s, ..., ¢,_1, ¢,, the resulting amplification factor reads

GZ2)=14+cvZA+covZ(--- (1 +c1v2))). (49)

Eq. (49) defines the stability domain of the Runge—Kutta time operator in the complex plane. It is imme-
diate to verify that the amplification factor at the origin of the complex plane is equal to one. Another way
to explain the phenomenon described above is the following: if we consider a checkerboard (maximum fre-
quency) mode, the fluctuation on each element is zero, so the signals for an £P scheme will be zero as well.
As a consequence, the mode will not be dissipated nor propagated. This behavior is very similar to that
observed when using centred FD schemes. It is noteworthy that numerical experiments prove that the high
frequency modes have low or no damping even on non Cartesian grids. Finally, the Fourier footprint of the
SUPG method, which is not LP, is not constrained by Eq. (44), and, as shown in Fig. 11, the magnitude of
its amplification factor is less than one for (S, f5,) = (£n, +n). In conclusion, the analysis above indicates
that £P schemes, when applied to quadrilateral cells, are marginally stable for any value of the Courant
number, so that they require additional dissipation to compute pure advection problems. Indeed, LP
schemes can be effectively stabilized by an artificial-dissipation (AD) term without affecting their order of
accuracy. A simple strategy is proposed here, namely, adding the bias term of the SUPG scheme to the
signals of the original £P scheme:

R e N / ©(A- VN,V - f,dQ. (50)
QF

Notice that such a scheme has the same dispersion error as the original £LP one, but a greater dissipation error,
due to the added AD. For example, the amplification factor of the LDA scheme with AD is shown in Fig. 12.
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Fig. 12. LDA scheme with AD: amplification factor error for the advection equation with 6 = 0 (left), 6 = n/6 (center) and § = n/4 (right).

The dispersive properties of RD schemes are presented in terms of the dispersion error, Re(B/) — B Figs.
13-15 provide the contour lines in the (f,, f,) plane, for different advection angles, . The LDA and LW
schemes provide very similar contour patterns, which are also very close to those obtained on triangular cells,
which are given in Fig. 16 for the case = /6. The dispersion error obtained using the second-order accurate
centred and (fully) upwind FD schemes, the fourth-order accurate scheme of [24], the standard fourth-order
accurate FD scheme, which requires a wider stencil, and the Padé scheme are also reported in Figs. 18-21, for
comparison.

It has already been mentioned that the bias term of the artificial dissipation used to stabilize LP schemes is
purely dissipative and does not alter the dispersive properties of the underlying £P scheme. Therefore, the
SUPG scheme has the same dispersion error as that of the F€-Gal one and thus of the scheme of Abarbanel
and Kumar [24]. Moreover, some other well-known schemes share the same dispersive characteristics. Indeed,
the following relations will be derived:

Re(BLT-“D—upwl) — Re([}/f-‘D-cenZ)’ (51)
Re(B*) = Re(B"), (52)
RC(BILW) _ Re(ﬁ/RD-cen), (53)

where FD-upwl1 stands for the FD first-order upwind scheme, FD-cen2 stands for the FD second-order cen-
tred scheme, and RD-cen stands for the RD centred scheme (fluctuation equally distributed among the nodes).

Eq. (51) stems from a multidimensional generalization of the results achieved by Li [19]. In particular,
considering a computational stencil with 2N + 1 points in one dimension, the centred scheme is character-
ized by a formal accuracy of order 2N, while the most accurate upwind-biased scheme reaches an accuracy
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Fig. 15. Dispersion error for the LDA (left) and LW (right) schemes for § = n/4.

of order 2N — 1. It is shown in [19] that the centred and upwind-biased schemes have the same dispersion
characteristics, their only difference consisting in the dissipation of the upwind-biased scheme. In a similar
way, one sees that LDA and N schemes have the same dispersion error and differ only for the dissipation
one, see Eq. (52), which is obtained directly by the Fourier footprints of the two schemes reported in
Appendix B.
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Fig. 18. Dispersion error for the second-order accurate (fully) upwind FD scheme with § = 0 (left) and § = n/6 (right).

Finally, the LW scheme relies on the upwind parameters k; which are based on the normal to the diagonals.
With reference to Fig. 5, since n; = —n3 and n, = —ny, it follows that k; = —k3 and k, = —k4. As a conse-
quence, the LW distribution coeflicients can be written as
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Fig. 21. Dispersion error for the fourth-order accurate centred compact scheme with § = 0 (left) and 6 = n/6 (right).

1 1
+€a Y2 = +ga '))3:1767 'y4:17C7 (54)

1= 4
where € and ¢ are functions of the parameters k;. Furthermore, according to Eq. (47), the imaginary parts of
the Fourier footprints relative to opposite elements are equal, namely:
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Im(29“) = Im(Z2%),

Im(2%) = Im(2%). (55)

Therefore, since the elemental Fourier footprints are combined according to Eq. (48), with the coefficients gi-
ven by Eq. (54), non-centred contributions relative to opposite elements cancel out, leading to Eq. (53); it is
noteworthy that the same relationship can be obtained, using a similar procedure, also for a uniform
triangulation.

A few final considerations about the spectral properties of the considered schemes are in order. The disper-
sion error provided by the second-order accurate (fully) upwind scheme is slightly smaller than that of the cen-
tred one, which is very close to the errors of RD schemes and of the fourth-order accurate one of [24].
Moreover, unlike the dissipation error, the dispersion error of explicit (non compact) schemes is mostly depen-
dent on the extent of the computational molecule. In fact, the dispersion error of the fourth-order accurate FD
centred scheme, shown in Fig. 20, is lower than the one produced by the scheme of [24], due to its larger sten-
cil. This is not true when using a compact scheme; in fact, the dispersion error provided by RD schemes
appears markedly larger than that given by the centred Padé one using the same stencil (see Fig. 21).

4.2. Pure diffusion equation

Consider now the case of pure diffusion (V- f = 0 in Eq. (1)). For a solution u# which has the form of a gen-
eric Fourier mode, the Laplacian of u can be written as

ﬁz

Viu = — e (56)

On the other hand, its discrete approximation (Vzu)num can be expressed as
/!

Vi) = — 'B—u, 57

( num h2
where, in general, 8’ € C. Considering that

du o2¢

A2 == 58

( u)num dt At u? ( )
and employing Eq. (57), one has

p'=-2% (59)

Again, it can be noticed that the introduction of the function " allows one to analyze and compare explicit
and compact schemes for the discretization of the diffusion term within a single mathematical framework.
Assuming an exact time integration, the amplification factor is given as
G =e"?".

As a result, the dissipative and dispersive properties of the scheme are given by Re(Z?) = —Re(f") and
Im(Z29) = —Im(p"), respectively. Centred schemes, being characterized by a real function f”, are purely dis-
sipative. A non-centred approach introduces instead some dispersion. Obviously, in the case of pure diffusion,
a centred approach is the only suitable choice, but this may not be the case for advection—diffusion problems,
as shown in the following section. In the present analysis, two schemes have been considered for the pure dif-
fusion equation, namely, the centred RD and FE-Gal schemes, their Fourier footprints being provided in
Appendix C, for completeness. Here, the contour lines of the amplification factor error, |G| — |Glex, Where
Gex = exp(—af?), in the (B, By) plane, for the case ¢ = 1, are given in Figs. 22 and 23 for a uniform Cartesian
grid and a uniform triangulation, respectively. Fig. 22 shows that the F€ Galerkin scheme is able to damp all
frequencies. On the other hand, a residual based approach leads to values of |G| equal to one for §, = £ or
B, = £m. This means that the Fourier modes with the highest frequency are not damped, violating the dissi-
pative nature of the term, because the values of Z¢ for high frequency modes cluster near the origin of the
complex plane, namely
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Fig. 23. Amplification factor error for the centred RD scheme (left) and the F€ Galerkin scheme (right) on a uniform triangulation.

Jlim Z9(B.,p,) = Z(8, = £m,p,) =0, (60)
Jlim_ (6. ,) = Z*(B.. p, = £1) = 0. (61)

which are valid for all £P residual distribution schemes.

Proposition 3. If a linear scheme for the discretization of the diffusion term on quadrilateral elements is LP, then
its Fourier footprint 2 is constrained by Egs. (60) and (61).

Proof. Consider a generic node i and the computational cells Qz € 4;. For each Qp, the elemental Fourier foot-
print, 25 with respect to node i, can be obtained as follows. Express the fluctuation, qﬁE’d, as a function of the
solution at the vertices of the element. For example, referring to the notation of Fig. A.1, the diffusive fluc-
tuation on the lower left element Q1 of Fig. 3 is computed as

u

fZ(fue —uy — up + 20 — u; — Uy — Uy — Uy + 2u, + 2u, + 2u, — u,). (62)
Then, substitute the Fourier mode into the general expression above to get
Ed oz
= Qi — U;. 63
o™ = 1) T (63)

Using this procedure, the following expressions for the Fourier footprint are obtained for each element shar-
ing node i (see Fig. 3):
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the convective fluctuation and the F€ Galerkin scheme for discretizing the diffusion term, leads to a first-
order accurate scheme. On the other hand, it was shown that distributing the whole fluctuation (convec-
tive plus diffusive) by an £LP scheme provides second-order accuracy. Fig. 24 show the amplification factor
errors, |G| — |Glex, in the (fy, f,) plane, of the LDA-LDA scheme, for values of the (numerical) Peclet
number, Pe =v/o, equal to 0.1 and 1.5, respectively. For the lower value of Pe, the error is greater than
one at the upper-right and lower-left corners of the plane, indicating that some high frequency modes are
amplified. Indeed, RD schemes are unsuitable to discretize the diffusion term insofar as they introduce
undamped high-frequency modes. In the case of advection—diffusion problems, this amplification can be
effectively balanced by the dissipative effect due to the upwind treatment of the convective term, provided
that Pe is sufficiently high. Nishikawa and Roe [26] proposed to employ an upwind scheme continuously
switching towards a centred discretization as Pe decreases, in order to treat advection—diffusion problems
for any value of Pe. However, such a strategy, being based on an RD approach, shows poor stability
properties for diffusion dominated problems.

5. Minimum dispersion error RD scheme

The truncation error and Fourier analyses provided so far are used in this section to design a second-order
accurate minimum-dispersion error RD LP scheme which is suitable for the discretization of the convective
term in advection—diffusion problems. A generic £LP scheme on quadrilateral elements is characterized by four
degrees of freedom, see Fig. 25. From Eq. (34) it appears that a hybrid £LP/FE-Gal scheme with y; = y; and
72 = 74 provides second-order accuracy for the advection—diffusion equation. It is noteworthy that a distribu-
tion scheme for the pure advection equation which satisfies the two conditions above does not introduce any
spurious dissipation, namely, it is purely dispersive. This property can be demonstrated looking at the Fourier
footprint of the elements contributing to each node in the case of pure advection, given by Eq. (47). In fact, the
real parts of the Fourier footprints of the four elements read:

1
Re(29) = —Re(29) = 3 [Ri, cos(0) + Ry, sin(0)],

Re(29) = —Re(Z2%) =

(69)
[Ra, cos(0) + Ry, sin(9)],

N —

where

Ry, = —1 +cos(f,) — cos(B,) + cos(B, + B,).
Ry, = —1 —cos(B,) + cos(p,) + cos(B, + B,),
Roe = 1 = cos(B,) + cos(B,) — cos(B, — B,),

Ry, = —1 —cos(B,) + cos(B,) + cos(B, — B,).

Since opposite elements have opposite Fourier-footprint real parts, conditions
=7 and p, =7, (70)

guarantee zero dissipation at each node. Thus, considering that the distribution coefficients must sum up to
one, for conservation, a one-parameter class of zero dissipation schemes exists. Needless to say, the centred
scheme, with y; =7y, = y3 = y4 = 1/4, belongs to this class.

N ¢S
Y2 gl
V3 V4

/N

Fig. 25. Degrees of freedom for an £P scheme.
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The modified wavenumber for this one-parameter class of schemes reads

Z?’ =2 {cos <%> cos(9) sin (i) + cos (g) sin (g) sm(é)}
(52 m (2 (1))

Starting from this formula, an optimal dispersion scheme can be designed by minimizing the L, norm of the
dispersion error, Re(f') — f, over a portion [—w, @] of the frequency domain, namely,

L= 42(/ / Re(B) — . dﬁ)l/z. (72)

This procedure leads to the following distribution coefficients:

1 .
P =99 = i W sin(20),
1 . (73)
19 =19 = L+ wsin20),

where y € R*. If one applies the minimization process over the entire frequency domain, @ = m, the coefficient
¥ is equal to 7/12 and the scheme is referred here as the Opt scheme. Notice that some authors, see, e.g., [19],
perform the optimization considering only the low-frequency portion of the Fourier spectrum, since RD
schemes are characterized by high dispersion errors for the highest wavenumbers anyway. Following this strat-
egy, namely, choosing @ = /2, the value of Y which minimizes L, is = 0.425.

When the flow is aligned with the mesh (¢ = 0), the Opt scheme coincides with the centred one, whose dis-
persion error is equal to that of the LW scheme, shown in Fig. 13 (right), because of Eq. (53). For §£0, the Opt
scheme provides a smaller dispersion error with respect to either any other £LP scheme or the centred FD one,
see Figs. 14, 17, and 19; furthermore, as shown in Fig. 26 for the case § = n/6, the dispersion error of the opti-
mal scheme is closer to that provided by the fourth-order accurate centred FD scheme, see Fig. 21. Therefore,
this scheme can indeed be considered optimal for discretizing the advection operator within the class of explicit
schemes with a nine-point stencil. It is noteworthy that the optimization procedure proposed here aims at pro-
viding a suitable discretization scheme of the advection operator in advection—diffusion problems, since the
minimization of the error is performed on the complete frequency plane. For pure advection problems, it
would be suitable to minimize the errors in the direction perpendicular to the advection velocity, the projection
of the solution gradient onto the advection direction being zero. Furthermore, the Opt scheme, being charac-
terized by zero dissipation, needs an AD mechanism to be employed for advection dominated problems. Here,
the same strategy described previously for £LP schemes, see Eq. (50), is employed, namely, adding a dissipative
bias which does not alter the dispersion properties of the scheme:

¢f,a _ yf)d)E,a + d):)ias- (74)

303230 ) 24— 3
3 2 A1 0 1 2 3

Fig. 26. Optimal scheme: dispersion error for the advection equation with é = n/6 (left) and é = /4 (right).
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Since the Opt scheme is not dissipative, the amplification factor error of the Opt-AD scheme of Eq. (74) coin-
cides with that of the SUPG scheme shown in Fig. 11.

Consider now the case of pure diffusion. It can be shown in a similar way that the Fourier footprints relative
to opposite elements (Q; — Qz and Q> — Q4) are symmetrical with respect to the real axis of the complex plane,
namely,

{ Re(Z2) = Re(29), { Im(22) = —Im(29),

Re(294) = Re(2%9), | Im(299) = —Im(Z%). (73)

Hence, looking at Eq. (65), it can be seen that schemes with o; = 3 and o, = a4 provide no spurious disper-
sion, namely, their Fourier footprints lie on the real axis of the complex plane. Thus a one-parameter class of
dispersion-free RD schemes is obtained. Analyzing the expression of the elemental Fourier footprints, Eq.
(64), it can be verified that within this class, the only scheme that does not produce amplified modes is the
centred one (o; = 1/4, i=1, ..., 4). Therefore, the schemes satisfying Eq. (73), with i # 0, provide amplified
modes when discretizing the diffusion term.

From the considerations above and the conclusions drawn in Section 4.3, it appears that an appropriate
scheme for discretizing the advection—diffusion equation with second-order accuracy on a nine-point stencil
would be a hybrid one using the Opt and F&-Gal schemes for the advection and diffusion terms, respectively.
In fact, the analysis shows that, within the class of second-order accurate schemes for the pure advection oper-
ator, RD LP schemes, including multidimensional upwind ones, are unsuitable for discretizing diffusion dom-
inated problems since they: (i) provide amplified (or at least undamped) modes arising from the distribution of
the diffusive fluctuation; (ii) produce first-order accurate solutions when employed to distribute the convective
fluctuation in conjunction with any other discretization scheme for the diffusion term. On the other hand, for
advection dominated problems, it could be worth distributing the entire fluctuation according to an upwind
RD LP approach, since the dissipation introduced by the discretization of the convective term effectively sta-
bilizes the aforementioned undamped modes arising from the diffusion term.

6. Numerical results
6.1. Advection equation

6.1.1. Accuracy study
The accuracy of some RD schemes for quadrilateral cells has been verified numerically by performing a
mesh-refinement study for the linear advection of the sinusoidal profile,

oo oo )]

in the domain [0, 1%, with A= (a, b), a=1, b =2 (solution imposed at inlet boundaries). Four grids have
been used, composed of 322, 642, 128% and 256 elements, respectively, the second one being shown in
Fig. 27. The size of the mesh, namely, the square of the area of the domain divided by the number of ele-
ments, is again indicated with /4. The logarithms of the L, L,, and L., norms of the errors have been com-
puted and the results are plotted versus the logarithm of 4 in Figs. 28-32, for the N, PSI, LDA, Opt-AD,
and SUPG schemes: the N scheme, which is not linearity preserving, is only first-order accurate; the PSI
scheme has an order of accuracy between one and two, as already known [3]; the LDA, Opt-AD, and SUPG
schemes are all seen to be second-order accurate. It is noteworthy that: the results of the LDA-AD scheme
coincide with those of the LDA scheme, within plotting accuracy; the Opt scheme does not converge, as
anticipated; the SUPG scheme is third-order accurate when using a uniform Cartesian grid, as shown in
Fig. 33, provided here for completeness. Furthermore, Fig. 34 provides a comparison among the conver-
gence histories of the various schemes, using an explicit Euler time integration and the non Cartesian grid
with 322 elements. The SUPG scheme requires the minimum number of iterations among the second-order
accurate ones. The ad